How Many Ways Can Things Be The Same?

 Set Theory For Multiple Site Surveys. Richard Clegg (richard@manor.york.ac.uk)Networks and Nonlinear Dynamics Group, Department of Mathematics,

University of York
Slides prepared using the Prosper package and EATEX

Summary of Talk

- This talk is about a general framework for multiple site surveys in any context.
- This talk is about car number plates.
- This talk is about set theory.
- This talk is about a generalisation of the game of snap.
- This talk comes with a special offer.

Visualising the Problem

A \qquad B \qquad C \qquad

It seems that there are different types of match.

Problem Statement

1. Formalise the notion of a type of match.
2. Enumerate the types of match.
3. Formalise the concept of a false match.
4. Create an algorithm for removing false matches from real data.
5. Test this algorithm on simulated data and real data.

An n-Dimensional Game Of Snap

Type of match formalised with equivalence classes. An n-point observation represented as n-tuple: $\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)$. Two n-tuples \mathbf{x} and \mathbf{y} are equivalent ($\mathbf{x} \sim \mathbf{y}$) iff:

$$
\begin{aligned}
\left(x_{i}=x_{j}\right) & \Longleftrightarrow\left(y_{i}=y_{j}\right) \\
(1,4,7,1) & \sim(0,10,7,0) \\
(\diamond, \diamond, \boldsymbol{\uparrow}, \diamond, \boldsymbol{\uparrow}) & \sim(\diamond, \diamond, \boldsymbol{\uparrow}, \diamond, \boldsymbol{\uparrow}) \\
(\mu, \mu, \pi, \phi) & \nsim(\mu, \pi, \phi, \phi)
\end{aligned}
$$

(elephant,rhino, hippo, elephant) $\sim(\bullet, \bullet, \bullet, \bullet)$
$(\mathrm{A} 154 \mathrm{FDE}, \mathrm{A} 154 \mathrm{FDE}, \mathrm{B} 232 \mathrm{DSR}) \nsim(\mathrm{A} 154 \mathrm{FDE}, \mathrm{A} 154 \mathrm{FDE}, \mathrm{A} 154 \mathrm{FDE})$

The Set \mathcal{M}_{n} of All Types of Match

An n-tuple $\mathbf{x} \in \mathcal{M}_{n}$ iff $x_{i} \in \mathbb{N}$ and:

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{ll}
1 & i=1 \\
x_{j} \text { for some } j<i & i>1 \\
1+\max _{j<i}\left(x_{j}\right) & i>1
\end{array}\right. \text { or } \\
(1,4,7,1) \sim(1,2,3,1) \\
(\bigcirc, \bigcirc, \boldsymbol{\uparrow}, \bigcirc, \boldsymbol{\uparrow}) \sim(1,1,2,1,2)
\end{gathered}
$$

The set \mathcal{M}_{n} is a transversal of all n-tuples under the relation defined by \sim.

Enumerating and Ordering \mathcal{M}_{n}

\mathcal{M}_{n} can be set in one-to-one correspondance with the set \mathcal{P}_{n} of partitions of $(1,2, \ldots, n)$.

$$
\begin{aligned}
(1,1,2,3,1) & \sim\{\{1,2,5\},\{3\},\{4\}\} \\
(1,2,2,1) & \sim\{\{1,4\},\{2,3\}\}
\end{aligned}
$$

\mathcal{P}_{n} can be counted using Stirling numbers.
The next step is to introduce a partial ordering on \mathcal{M}_{n}. If $\mathbf{x}_{n}^{\mathcal{M}}, \mathbf{y}_{n}^{\mathcal{M}} \in \mathcal{M}_{n}$ then:

$$
\mathbf{x}_{n}^{\mathcal{M}} \succsim \mathbf{y}_{n}^{\mathcal{M}} \text { iff }\left(x_{i}=x_{j}\right) \Longrightarrow\left(y_{i}=y_{j}\right)
$$

Visualising the Set \mathcal{M}_{n}

Hasse diagram for \mathcal{M}_{4}.

Relating this to False Matches

The censoring function $C(x)$ represents observation of only part of a plate. If $\mathbf{y}=C(\mathbf{x})$ then:

$$
\left(x_{i}=x_{j}\right) \Longrightarrow\left(y_{i}=y_{j}\right) .
$$

The partial ordering now relates to the censoring function. If \mathbf{z} is an n-tuple of observations and $\mathbf{x}_{n}^{\mathcal{M}}, \mathbf{y}_{n}^{\mathcal{M}} \in \mathcal{M}_{n}$ then:

$$
\left(\mathbf{x}_{n}^{\mathcal{M}} \sim \mathbf{z}, \mathbf{y}_{n}^{\mathcal{M}} \sim C(\mathbf{z})\right) \Longrightarrow\left(\mathbf{y}_{n}^{\mathcal{M}} \precsim \mathbf{x}_{n}^{\mathcal{M}}\right) .
$$

Probability and Height

- The Height of $\mathbf{x}_{n}^{\mathcal{M}} \in \mathcal{M}_{n}$ is the maximal element. $H(1,2,2,1,3)=3$.
- The Height of $\mathbf{x}_{n}^{\mathcal{M}} \sim \mathbf{y}$ is the number of distinct elements observed in the n-tuple \mathbf{y}.
- Define $p(n)$ as the probability that n distinct observations are observed to be the same in the censored data.
- The probability that \mathbf{x} is a match is $p\left(H\left(\mathbf{y}_{n}^{\mathcal{M}}\right)\right)$ where $\mathbf{y}_{n}^{\mathcal{M}} \sim \mathbf{x}$. Hence construct an algorithm for false matches.

Results and Problems

■ Tests have been made on simulated data (see paper).

- In general the results are good - the estimator seems to be unbiased (as claimed).
- Variance on estimates is high.

■ In real surveys estimating $p(n)$ can be difficult.

- In real surveys, the number of false matches can be huge.

Conclusion and a Request

- This framework provides new methods for surveys over more than two sites.
■ Next: extend the method to provide confidence limits and deal with errors.
- The EPSRC has agreed to fund further work on this method to correct these problems and apply it to new data sets.
- I need to find data sets which people want analysing which might benefit from this method. (richard@manor.york.ac.uk).

