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Summary of Talk

� This talk is about a general framework for
multiple site surveys in any context.

� This talk is about car number plates.
� This talk is about set theory.
� This talk is about a generalisation of the game

of snap.
� This talk comes with a special offer.
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Visualising the Problem
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DCBA

B=C

A=B=C

A=C

A=B

A=C

A=B

C=D

B=D

A=B=C=D

A=B and C=D?
A=C and B=D?

It seems that there are different types of match.
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Problem Statement

1. Formalise the notion of a type of match.

2. Enumerate the types of match.

3. Formalise the concept of a false match.

4. Create an algorithm for removing false
matches from real data.

5. Test this algorithm on simulated data and real
data.

How Many Ways Can Things Be The Same? – p.4/12



An n-Dimensional Game Of Snap

Type of match formalised with equivalence classes. An
n-point observation represented as n-tuple: x = (x1, . . . xn).
Two n-tuples x and y are equivalent (x ∼ y) iff:

(xi = xj) ⇐⇒ (yi = yj)

(1, 4, 7, 1) ∼ (0, 10, 7, 0)

(♥,♥,♠,♥,♠) ∼ (♦,♦,♠,♦,♠)

(µ, µ, π, φ) 6∼ (µ, π, φ, φ)

(elephant, rhino, hippo, elephant) ∼ (•, •, •, •)

(A154FDE, A154FDE, B232DSR) 6∼ (A154FDE, A154FDE, A154FDE)
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The Set Mn of All Types of Match

An n-tuple x ∈ Mn iff xi ∈ N and:

xi =















1 i = 1

xj for some j < i i > 1 or

1 + maxj<i(xj) i > 1

(1, 4, 7, 1) ∼ (1, 2, 3, 1)

(♥,♥,♠,♥,♠) ∼ (1, 1, 2, 1, 2)

The set Mn is a transversal of all n-tuples under the relation

defined by ∼.
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Enumerating and Ordering Mn

Mn can be set in one-to-one correspondance with
the set Pn of partitions of (1, 2, . . . , n).

(1, 1, 2, 3, 1) ∼ {{1, 2, 5}, {3}, {4}}
(1, 2, 2, 1) ∼ {{1, 4}, {2, 3}}

Pn can be counted using Stirling numbers.

The next step is to introduce a partial ordering on
Mn. If xM

n , yM
n ∈ Mn then:

xM
n % yM

n iff (xi = xj) =⇒ (yi = yj).
How Many Ways Can Things Be The Same? – p.7/12



Visualising the Set Mn

(1,2,3,4)

(1,1,2,3) (1,2,1,3) (1,2,3,1) (1,2,2,3) (1,2,3,2) (1,2,3,3)

(1,1,1,2) (1,1,2,2) (1,1,2,1) (1,2,1,2) (1,2,1,1) (1,2,2,1) (1,2,2,2)

(1,1,1,1)

H(xMn ) = 4

H(xMn ) = 3

H(xMn ) = 2

H(xMn ) = 1

Hasse diagram for M4.
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Relating this to False Matches

The censoring function C(x) represents observation
of only part of a plate. If y = C(x) then:

(xi = xj) =⇒ (yi = yj).

The partial ordering now relates to the censoring
function. If z is an n-tuple of observations and
xM

n , yM
n ∈ Mn then:

(xM
n ∼ z, yM

n ∼ C(z)) =⇒ (yM
n - xM

n ).
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Probability and Height

� The Height of xM
n ∈ Mn is the maximal

element. H(1, 2, 2, 1, 3) = 3.

� The Height of xM
n ∼ y is the number of distinct

elements observed in the n-tuple y.
� Define p(n) as the probability that n distinct

observations are observed to be the same in the
censored data.

� The probability that x is a match is p(H(yM
n ))

where yM
n ∼ x. Hence construct an algorithm

for false matches.
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Results and Problems

� Tests have been made on simulated data (see
paper).

� In general the results are good – the estimator
seems to be unbiased (as claimed).

� Variance on estimates is high.
� In real surveys estimating p(n) can be difficult.
� In real surveys, the number of false matches

can be huge.
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Conclusion and a Request

� This framework provides new methods for
surveys over more than two sites.

� Next: extend the method to provide confidence
limits and deal with errors.

� The EPSRC has agreed to fund further work on
this method to correct these problems and
apply it to new data sets.

� I need to find data sets which people want
analysing which might benefit from this
method. (richard@manor.york.ac.uk).
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