^AUCI

47 (22

 K 5

Indirect Reciprocity and Strategic Agents I

Raúl Landa Networks and Services Research Laboratory Department of Electronic and Electrical Engineering University College London

Overlay Networks

The Tragedy of the Commons

- Every participant is called a *peer*, and it has both client and server roles.
- Peers are assumed to be self interested
- If there is no incentive for contribution, there is a tendency to *freeload*
- A solution for this is *reciprocity*

Direct Reciprocity shows that even if information is transmitted only locally and errors

• Tit-for-Tat

Nature 437, 1291-1298 (2005)

Indirect Reciprocity

• Tit-for-Tit-for-Tat

Nature 437, 1291-1298 (2005) Figure 1 1 291 - 1 298 (2005)

Our Contribution

• An analytic technique for the geometric analysis of contribution flows

• We consider the **contribution topology**, where a link is created between two nodes if one gives a contribution to the other.

• Reciprocity creates loops in the contribution topology.

- Reciprocity creates loops in the contribution topology.
- However, altruism requires non-cyclic contribution flows

- Reciprocity creates loops in the contribution topology.
- However, altruism requires non-cyclic contribution flows
- How can we model these contribution flows?

Functions in Graphs

- Domain:
	- Nodes (N)
	- $-$ Links (L)
	- Cycles (C)
- Range:
	- $-$ Reals (\mathbb{R})

Differential Operators in Graphs

- They operate over node, link and cycle functions
- Equivalent to the well known vector operators:
	- Divergence
	- Gradient
	- Curl
	- Laplacian [−]⁴ [−]³ [−]² [−]¹ ⁰ ¹ ² ³ ⁴

The Divergence

 $D(n_i, l_j) =$ \int 1 if link l_j is outgoing from node n_i -1 if link l_j is incoming to node n_i

Calculating the Divergence

• If we have a link function f , we calculate its divergence simply by:

$$
Df = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \end{pmatrix}
$$

Calculating the Divergence

• If we have a link function f , we calculate its divergence simply by:

$$
\begin{pmatrix}\n d_1 \\
 d_2 \\
 d_3 \\
 d_4\n\end{pmatrix} =\n\begin{pmatrix}\n f_1 - f_3 \\
 f_2 + f_3 - f_6 \\
 f_6 - f_1 - f_5 \\
 f_5 - f_2\n\end{pmatrix}
$$

The Gradient

• It is just the transpose of the divergence

$$
G = D^T
$$

 \bullet If we have a node function F , we calculate its gradient simply by:

$$
\left(\begin{array}{c} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \end{array}\right) = \left(\begin{array}{c} F_1 - F_3 \\ F_2 - F_4 \\ F_2 - F_1 \\ F_4 - F_3 \\ F_3 - F_2 \end{array}\right)
$$

The Rotational Operators

- They require knowledge of the *cycle structure* of the graph G :
	- $-$ Generate \mathcal{G}' , an undirected version of $\mathcal G$
	- Embed \mathcal{G}' in a surface with minimum *genus*
	- Recover a *cellular cycle basis* from the embedding
	- Define an *orientation* for the cycle basis
	- Use this oriented cycle basis to define the curl

Graph Surface Embedding

- An embedding of \mathcal{G}' on a surface S is a way of drawing G' on S so that there are no edge crossings.
- Links become *lines* in S
- Nodes become *points* in S

Minimum Genus Embedding

- A surface embedding on which S has the minimum number of holes possible
- We focus on *orientable, closed* surfaces, although the embedding can be done on nonorientable surfaces as well

Cellular Cycle Basis

- A minimum genus embedding provides a *cellular cycle system*, where:
	- Every link belongs to exactly two cycles, a *left* cycle and a *right* cycle
	- Areas bordered by links become polygonal *faces*
		- In a planar graph, each face defines a cellular cycle
	- The network becomes a *polyhedron*

The Curl

 $C(c_i, l_j) =$ \int 1 if link l_j is positively oriented along cycle c_i −1 if link l_j is negatively oriented along cycle c_i

Calculating the Curl

• For a given link function f , we have that Cf can be calculated as:

$$
\begin{pmatrix}\nc_1 \\
c_2 \\
c_3\n\end{pmatrix} = \begin{pmatrix}\nf_1 + f_3 - f_2 - f_4 \\
f_2 + f_5 + f_4 \\
-f_1 - f_5 - f_3\n\end{pmatrix}
$$

The Adjoint Curl

• It is just the transpose of the curl

 $S = C^T$

• If we have a cycle function F , we have for SF :

$$
\left(\begin{array}{c} s_1\\ s_2\\ s_3\\ s_4\\ s_5 \end{array}\right)=\left(\begin{array}{c} F_1-F_3\\ F_2-F_1\\ F_1-F_3\\ F_2-F_1\\ F_2-F_3 \end{array}\right)
$$

Gradients are Irrotational

 \bullet For any node function F we have that:

$$
CGF=0
$$

- This is because every row of C (a cycle c_i) is orthogonal to every column in G (a node n_j)
	- Two cases:
		- If n_j does not belong to c_i , they will have no common nonzero entries and $c_i \cdot n_j = 0$.
		- If n_j does belong to c_i , we know that they have exactly two \cdots , about solving to ϵ_i , we might that they have exactly the common nonzero entries, corresponding to the two links in c_i , incident on n_j .

\triangle UC

Gradients are Irrotational

- In this case, we have two sub-cases:
	- $-$ Sub-case 1: Both links incident to n_j have the same orientation with respect to c_i
		- Their entries in will c_i have the same sign, but their entries in n_j will have opposite signs (one outgoing, one incoming)
	- $-$ *Sub-case 2*: The 2 links incident to n_j have opposite orientations with respect to c_i
		- Their entries in n_j will have the same sign, but their entries in c_i will have opposite signs (one with c_i , one against it)

Gradients are Irrotational

• Thus, every link function f that has zero curl can be represented as the gradient of a node potential ϕ :

$$
Cf=0 \Rightarrow f=G\phi
$$

Adjoint Curl functions are Incompressible

• For any cycle function F , we have that:

$$
DSF=0
$$

- Proof:
	- We have that:

$$
(CG)^T = G^T C^T = DS
$$

– And thus:

$$
CG = 0 \iff DS = 0
$$

Adjoint Curl functions are Incompressible

• Thus, every link function f that has zero divergence can be represented as the curl of a cycle potential ψ :

$$
Df=0\;\Rightarrow\;f=C\psi
$$

Second-Order Differential Operators

 \bullet By combining D, G, C and S we obtain second-order operators. 10 11 11 ϵ

Node Eigenvalue: 0.46737

Link Eigenvalue: 4

Node Eigenvalue: 0.5884

• The eigenvectors of 8 these operators provide basis for node, cycle and link functions $\overline{}$ \overline{a} 1 LC JI L ,

Link Eigenvalue: 4.8936

Link Eigenvalue: 4.4691

Link Eigenvalue: 5.1716

The Node Laplacian

- The divergence of the gradient
	- Maps node functions to node functions

- Measures the difference between the value of a node function in a node and its average value in the neighborhood of the node $\mathcal{L}_N = DG = DD^T$
Measures the differen
between the value of a
function in a node and
average value in the
neighborhood of the n
Its eigenvectors provid
basis for node functiol
node basis
- Its eigenvectors provide a basis for node functions: a

$$
\begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \end{pmatrix} = \begin{pmatrix} 2F_1 - F_2 - F_3 \\ 3F_2 - F_1 - F_3 - F_4 \\ 3F_3 - F_1 - F_2 - F_4 \\ 2F_4 - F_2 - F_3 \end{pmatrix}
$$

Node Laplacian Eigenfunctions

The Irrotational Laplacian

- The divergence of the gradient
	- Maps link functions to link functions

 $\mathcal{L}_I = GD = D^TD$

- Its eigenvectors span the *cut-set subspace*
	- They provide a basis for link functions defined over cut-sets (a *cut-set basis*)

$$
\begin{pmatrix}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{pmatrix} \\
\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{pmatrix} \\
\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{pmatrix} \\
\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin
$$

The Irrotational Laplacian Link Eigenvalue: 0.76393

- The divergence of the gradient dient behandlik behandlik behandlik behandlik behandlik beste behandlik beste behandlik beste behandlik beste
	- Maps link functions to link functions

 $\mathcal{L}_I = GD = D^TD$ α α β β

- Its eigenvectors span the *cut-set subspace*
	- They provide a basis for link functions defined over cut-sets (a cut-set basis)

Link Eigenvalue: 1.1716

Link Eigenvalue: 1.1716

The Solenoidal Laplacian

 $\sqrt{ }$

 $\overline{}$

- The adjoint curl of the curl
	- Maps link functions to link functions
	- $\mathcal{L}_S = SC = C^T C$
	- Its eigenvectors span the *cycle subspace*:
		- They provide a basis for link functions defined over cycles (a *cycle basis*)

$$
\begin{pmatrix}\n1 \\
6 \\
6 \\
1 \\
6\n\end{pmatrix} = \begin{pmatrix}\n2f_1 + 2f_3 + f_5 - f_2 - f_4 \\
2f_2 + 2f_4 + f_5 - f_1 - f_3 \\
2f_3 + 2f_1 + f_5 - f_2 - f_4 \\
2f_4 + 2f_2 + f_5 - f_1 - f_3 \\
2f_5 + f_1 + f_2 + f_3 + f_4\n\end{pmatrix}
$$

The Solenoidal Laplacian

- The adjoint curl of the curl
	- Maps link functions to link functions

 $\mathcal{L}_S = SC = C^T C$

- Its eigenvectors span the *cycle subspace*:
	- They provide a basis for link functions defined over cycles (a cycle basis) 9 10 11 12

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.46737

Link Laplacian Eigenfunctions

- It is easy to prove that the cycle and the cut-set subspaces are orthogonal.
	- We begin with the eigen-decompositions:

$$
\mathcal{L}_S = U_S \Lambda_S U_S^T \qquad \qquad \mathcal{L}_I = U_I \Lambda_I U_I^T
$$

• Given that $U_S^T U_S = I$ and $U_I^T U_I = I$, we have that:

 $U_S^T \mathcal{L}_S = \Lambda_S U_S^T$ $\mathcal{L}_I U_I = U_I \Lambda_I$

$$
U_S^T \mathcal{L}_S \mathcal{L}_I U_I = \Lambda_S U_S^T U_I \Lambda_I
$$

• But $\mathcal{L}_S \mathcal{L}_I = SCGD = 0$, because $CG = 0$.

Link Laplacian Eigenfunctions

• Thus, we have that:

 $\Lambda_S U_S^T U_I \Lambda_I = 0$

- Thus, for all eigenvalues, the eigenvectors of the solenoidal Laplacian (the columns of U_S) are orthogonal to the eigenvectors of the irrotational Laplacian (the columns of U_I).
- The cycle subspace and the cut-set subspace are orthogonal.

The Link Laplacian

• We define the link Laplacian following the usual vector Laplacian from calculus:

$$
\nabla^2 \mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F})
$$

• This is equivalent to:

$$
\mathcal{L}_L = \mathcal{L}_I - \mathcal{L}_S = GD - SC
$$

• The link Laplacian maps link functions to link functions

Link Laplacian Eigenfunctions

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.5884

 \triangle UCL \triangle

Link Eigenvalue: 0.76393

Link Eigenvalue: 0.76393

Link Eigenvalue: 1.1064

Link Eigenvalue: 1.1716

Link Eigenvalue: 1.1064

Link Eigenvalue: 1.1716

3 4 4

The Rank of \mathcal{L}_S , \mathcal{L}_I and \mathcal{L}_L

- G and \mathcal{L}_I have rank $|N| 1$
- C and \mathcal{L}_S have rank $|C| 1$
- Thus, \mathcal{L}_L has rank $|N| + |C| 2$
- For planar graphs, the rank of \mathcal{L}_L equals | L|, due to Euler's Formula:

 $V - E + F = 2$

Modeling Indirect Reciprocity

- Any contribution field f can be expressed as the sum of two orthogonal components:
	- $-f_\psi$, a superposition of flows along cycles
		- Incompressible (zero divergence)
		- Modeled through a cycle potential ψ .
	- $-f_\phi$, a superposition of flows through cut-sets
		- Irrotational (zero curl)
		- Modeled through a node potential ϕ .

Modeling Indirect Reciprocity

• To obtain f_{ψ} from f, we use the cycle projector P_{ψ} :

$$
P_\psi = \hat{U}_S \hat{U}_S^T
$$

- Thus: $f_{\psi}=P_{\psi}f$
- To obtain f_{ϕ} from f, we use the cut-set projector P_{ϕ} :

$$
P_{\phi} = \hat{U}_I \hat{U}_I^T
$$

– Thus: $f_{\phi} = P_{\phi}f$

• We obtain \hat{U}_S and \hat{U}_I by selecting from U_S or U_I the eigenvectors corresponding to nonzero eigenvalues ˆ \hat{S} and \hat{U} ˆ I_I by selecting from U_S or U_I

Calculating Potentials

• For the cut-set potential ϕ we have that:

$$
P_{\phi}f = G\phi
$$

- Since we assume that we are dealing with a connected graph, the rank of G is $|N|-1$.
	- $-$ We perform an SVD on G and discard the singular vectors related to the zero eigenvalues. We have:

$$
G = \hat{U}_I \hat{\Lambda}_I^{\frac{1}{2}} \hat{V}_I^T
$$

$$
\hat{U}_I^T f = \hat{\Lambda}_I^{\frac{1}{2}} \hat{V}_I^T \phi
$$

Calculating Potentials

• As $\hat{\Lambda}$ has full rank, we can solve for ϕ : $\hat{\Lambda}$ has full rank, we can solve for ϕ

$$
\phi = \hat{V}_I \hat{\Lambda}_I^{-\frac{1}{2}} \hat{U}_I^T f
$$

 \cdot In the same way, if we perform SVD on S and discard zero eigenvalues:

$$
S=\hat{U}_S\hat{\Lambda}_S^{\frac{1}{2}}\hat{V}_S^T
$$

• Following an identical procedure, we find that:

$$
\psi = \hat{V}_S \hat{\Lambda}_S^{-\frac{1}{2}} \hat{U}_S^T f
$$

Conclusions

- Indirect Reciprocity
	- Is important for the practical deployment of overlay networks
	- Implies contribution flows built through the superposition of cycles
- Differential Operators
	- Provide basis for the cut-set and cycle spaces
	- Allow contribution fields to be decomposed in these components
- Applications?

Thank You!

Planarity and Embedding on the Sphere

