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Network Control
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Network Control

Rate control

Kelly, Maulloo & Tan [1998], Jin, Wei & Low (FAST TCP) [2004]
Routing

Griffin, Sheperd & Wilfong [2002], Walker & Wennink [2005]
DSL Access (Spectrum Management)

Cendrillon, Huang, Chiang & Moonen [2007]
Wireless power control

Hande, Rangan & Chiang [2006], ...
Overload control

Wennink, Williams, Walker & Strulo [2007]
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Network Control

» Routing and congestion control
Paganini [2006]

» Routing, congestion control, and MAC scheduling
Chen, Low, Chiang, & Doyle [2006]

» Layering
Chiang, Low, Calderbank & Doyle [2007]
‘Layering as optimization decomposition: A mathematical
theory of network architectures’
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Lagrangian Models

» State (or formulate) control problem as objective and
constraints in the language of mathematical optimisation
theory, eg.

» control problem: routing
» objective: minimise cost of flow
» constraints: maintain flow balance at nodes

» Combine objective and constraints into single function, the
Lagrangian. Each constraint introduces a dual variable
(Lagrange multiplier). Optimisation problem becomes a
saddle point problem.
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Lyapunov Convergence

» Decompose Lagrangian into a collection of subproblems.
» Different parts of network then own different variables.

» Interaction between subproblems specifies a distributed
algorithm, or dynamic system.

» Lyapunov function is a certificate that this algorithm does
find the saddle point, as intended.
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Example - Flow control

Network Utility Maximisation (NUM) formulation

» User determined flows, X;

» Concave utility of flows U;(x;)

» Network resource capacities, K;
» i € jif flowi uses resource |
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Flow control

Lagrangian formulation

m

ZU X; +Z<yJ(K —ZX|)—7TJ'(YJ'))

=1 lej
» y; > 0 Lagrange multiplier associate with resource j

» 7;(y;) Barrier function representing queue behaviour or
congestion costs.
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Graphical presentation of Lagrangian

dual variables primal variables
prices flows
owned by network owned by user
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Flow control dynamics, (Kelly, Maulloo, Tan, 1998)

Primal algorithm (User control)
X = /i(Wi =X Zyk)
kei
Dual algorithm (Network control)

YJ—V<ZXI '—7T YJ))>

l€j

» Why these two candidates?

» Do they reach equilibrium?

» If s0, is the equilibrium the saddle point of L?
» Are there other possibilities?
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lllustration, single flow, single resource
Utility U(x) = w log(x)

max w logx = minmax wlogx — y (x — K)
st. x<K y20 X

y >0
yK ’_?_‘fyx mwlogx
V=
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Saddle point conditions

L(x;y)=wlogx— yx+yK, y >0

giveny : max L(x;y)

oL w
OX @x y =X

<|=

given X : rynzlg L(x;y)

=0 ifx <K
y =+o00 ifx>K
>0 ifx =K
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Saddle point conditions

—elogy

L(x;y) =wlogx — yx+yK —¢€lo
( y) g y y € gy yK 7yx . w log x

giveny : max L(x;y) .
oL w w os
— — 0 - — — O X =— 02
Ox “x Y ~ y ,
given X : myin L(x;y) )
oL € .
_— = O =
oy - Y TK=x 5
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The saddle point
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Primal algorithm

We assume y updates instantaneously, maintainingy = =
Then x performs a gradient search:

dx AaL_)\w

at - ox (; -Y)
(Increase x if U’(x) >y, decrease if U'(x) <y.)

y
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Dual algorithm

We assume x updates instantaneously, maintaining x = %
Then y performs a gradient search:

dy oL €
a——M@—N(X—K"‘y)

(Increasey if x > K, decrease if x < C.)

y

1
0.8
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Combined primal-dual algorithm

Both x and y perform a gradient search:

dx \ oL dy oL

dt ~ “ox dt Moy

08
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X
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Our result, informally

Given

» concave-convex L(x,y)

» concave F(x), convex G(y)
Then trajectories with

d oL d oL

converge on the saddle point of L.
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Flow control dynamics, (Kelly, Maulloo, Tan, 1998)

Primal algorithm (User control)
X) = — 1 > logx;
= TR2 gX;
|
Dual algorithm (Network control)

G(y) = Z i

» Automatic convergence proof
» Can combine primal and dual algorithms
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Proof is by Lyapunov function

A function ¢(x(t), y(t)) such that

» >0

» d¢/dt < 0 everywhere except at equilibrium
acts as a certificate of stability, or convergence.
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Our Lyapunov function

o(x,y) = G(a(y)) — F(p(x))

where

G(q) — G(y)
F(p) «— F(x)

are related by Legendre transform.
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The Legendre transform - first visualisation

Nigel Walker, Ben Strulo, Marc Wennink Convergence for Lagrangian Models



Introduction  Flow Control Our Result Interpretation Proof Conclusion

The Legendre transform - second visualisation
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Flow Balance example

y>0

yK i —yx .

Nigel Walker, Ben Strulo, Marc Wennink

Conclusion

capacity constraint:

K > x
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Flow Balance example

y=>0

o capacity constraint:
yK —yX

y
—i——. () K > x

Intuition:
y reacts to flow imbalance

- increases (— +o0) when x > K
- decreases (— 0) when x < K

is a signal which should lead to reduction of imbalance
- distance label in routing; congestion price in flow control
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Flow Balance example

flow balance constraint;

yK —yX
K = x

Intuition:
y reacts to flow imbalance

- increases (— +o0) when x > K
- decreases (— —oo) when x < K

is a signal which should lead to reduction of imbalance
- distance label in routing; congestion price in flow control
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Flow Balance example

flow imbalance:

yK —yX
° K =~ x

~

G(y)

Intuition:
y reacts to flow imbalance

- increases (— +o0) when x > K
- decreases (— —oo) when x < K

is a signal which should lead to reduction of imbalance
- distance label in routing; congestion price in flow control

G(y) specifies dynamic response of y to imbalance.

Nigel Walker, Ben Strulo, Marc Wennink Convergence for Lagrangian Models



Introduction  Flow Control Our Result Interpretation Proof Conclusion

Behaviour of y;

Rest of
system

Rather than define y, (or dya) directly in terms of the imbalance
(and somehow via G) ...

. consider the dynamics in terms of accumulated imbalance
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Behaviour of y;

Intuition: consider
charge stored in
capacitor

Rest of
system

Rather than define y, (or dya) directly in terms of the imbalance
(and somehow via G) ...

. consider the dynamics in terms of accumulated imbalance
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Behaviour of y;

Intuition: consider
charge stored in
capacitor or packets
stored in queue

Rest of
system

Rather than define y, (or dya) directly in terms of the imbalance
(and somehow via G) ...

. consider the dynamics in terms of accumulated imbalance
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Behaviour of y;

Intuition: consider
charge stored in
capacitor or packets
stored in queue

Rest of
system

Rather than define y, (or dya) directly in terms of the imbalance
(and somehow via G) ...

. consider the dynamics in terms of accumulated imbalance

In fact we use an abstract intermediate variable which
integrates this imbalance
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Behaviour of y;

Rest of
system

Consider a small time period Or for a general Lagrangian L
qg—() xi—K)it=0 dg _ oL
zi: I dt oy

Here q is determined by the dynamics of the rest of the system
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Conclusion

Behaviour of y

Rest of
system

ya and q y feeds back
related via G into system

Now if we can define the behaviour of y, in terms of g then we
have defined the process as we require
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Behaviour of y

dg _ oL
dt_—_ dy

/Dxex

Ga(a)—(2)

Rest of
system

ya and q y feeds back
related via G into system

We use G and its Legendre Transform to define the relationship
between g and y:

s

Now the flow balance equation will give us dynamics for y,
and the behaviour of G gives us a Lyapunov function. Q‘\
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Proof Outline

Eliminating g in the flow balance equation

dg _ oL
dt — dy

gives us dynamics for y

d(06) _ oL
dt \agy /) 0y
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Proof Outline

The Lyapunov function is decreasing because

Soly) = o B(aty))

8G dq
8q dt

__, 4G
— Y oy

oL
ay
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chain rule
Legendre transform x2

dynamic equation

convexity of L
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Main Result

» Primal-dual case
d » More than 1 dimension
——VF L )
dt VF € % > General coupled energy functions

Global asymptotic convergence

o
v

-—-VG L
dtv € Oy

v

Arbitrary equilibrium (away from origin)

v

Non-differentiable L (via sub-gradients)

In this way we directly integrate the convex optimisation
statement with the formulation of the dynamic system.
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Non-Strict Lagrangians

Strictness can be side-stepped by using the LaSalle Theorem

» Convergence to ¢ = 0 (i.e. in strict dimensions) may be
enough.
For example, if all primals converge we may not care about
the duals.

» Alternatively, and typically, convergence in the strict
dimensions may imply convergence in the non strict ones
since the limit set is the largest invariant set inside ¢ = 0.
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Conclusion

» Advocate a methodology for network control based on
optimisation theory

» formal process from specification to implementation
» certifying good behaviour along the way
» "design for provability"
» We provide a clean and general result in support of this
methodology

» Striking integration of concepts linking optimisation with
dynamics
» More such results are required

» discrete time, state space
» delay
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