Solution Methods for the Analysis of Large Markov Chains (CTMCs)

Rashid Mehmood

Swansea University

MATHEMATICS OF NETWORKS (Sixth Meeting) 29 June 2007

Context

• Stochastic Modelling

- \circ unpredictability is inherent in most real-life systems
 - e.g. communication networks
- Tools for analyzing such systems:
 - \circ e.g. discrete-state models
 - e.g. Markov Chains, CTMCs (continuous time)
- Behaviour of physical systems can be described by:
 - \circ a set of states and
 - \circ state to state transitions

• Three steps in performance evaluation:

 \circ 1. specification

- Model description:

e.g. queueing networks, stochastic Petri nets, ...

- Properties specification:

probabilistic logics (CSL, PCTL, ...)

- 2. state space generation
 - matrix generation from the formalism
- 3. computing performance measures
 - e.g. solving Ax = 0 for steady state solution

• Problem: State-space explosion

• we concentrate on phase three (*computationally expensive*):

- numerical solution of Ax = 0

State-Space Explosion

- The task is the iterative solution of Ax = 0
 - \circ requires storage of the matrix A and the vector(s) x
- Explicit techniques
 - disk-based storage of matrix (out-of-core)
 - \circ distribution to parallel nodes
 - \circ disk-based + parallel
- Implicit techniques (compact representation of matrix)
 - \circ e.g. symbolic: BDD-based data structures
- The aim
 - \circ extend the size of solvable models
 - \circ develop new solution techniques
 - \circ seek improvements in the existing
 - \circ build realistic models of interesting applications

Contents

- Numerical Computations and the available Methods
- Matrix Storage
 - Sparse and symbolic storage schemes
- The out-of-core solution Methods
- Parallel Symbolic implementation of Jacobi solution method
- Applications I have been looking at
- Summary and Future Work

The Numerical Computations

• Steady state computations

$$\circ \pi Q = 0, \sum_{i=0}^{n-1} \pi_i = 1$$

- Direct Methods

 Modify the matrix
 Problem: fill-in
- Iterative methods
 - \circ Based on matrix vector products (MVP)

Iterative Methods for Ax = b

- Residual = b Ax
 - \circ Make initial guess for the solution vector x
 - \circ Generate successive approximations
 - Until residual falls below some prescribed value
 - \circ Matrix is unchanged
- Basic Iterative methods
 - \circ Jacobi, Gauss-Seidel, SOR
 - \circ Iteratively, modify components of solution vector
 - Convergence tested for residual or error vector
- Projection methods
 - \circ Extract an approximate solution x from a subspace of \mathbb{R}^n
 - \circ Orthogonalisation, nonstationary, parameter-free
 - \circ Krylov subspace methods

Transition Matrices

• Continuous Time Markov Chains

 \circ Transition rate matrix Q

- $S\times S\to \mathbb{R}$

- Diagonal entries:
$$q_{ii} = -\sum_{i \neq j} q_{ij}$$

• Properties

 \circ Very large, sparse

 \circ Number of distinct values depends on the model

Transition Matrices (Polling System)

Case Study: Cyclic Sever Polling System [Ibe and Trivedi, 1990]
 k stations or queues and a server
 server polls the stations in a cycle looking for jobs

k	states	off-diagonal nonzero	a/n	MB
	(<i>n</i>)	(<u>a</u>)		per π
17	3,342,336	$31,\!195,\!136$	9.3	26
18	7,077,888	$69,\!599,\!232$	9.8	54
20	$31,\!457,\!280$	$340,\!787,\!200$	10.8	240
21	66,060,288	$748,\!683,\!264$	11.3	513
22	$138,\!412,\!032$	$1,\!637,\!875,\!712$	11.8	1,056
23	$289,\!406,\!976$	$3,\!569,\!352,\!704$	12.3	2,204
24	$603,\!979,\!776$	$7,\!751,\!073,\!792$	12.8	4,608
25	$1,\!258,\!291,\!200$	16,777,216,000	13.3	9,598

Case Studies (Kanban and FMS Systems)

• Case Study: FMS [Ciardo and Tilgner , 1993]

• Flexible Manufacturing System

 \circ models a system with three machines

 \circ machines process different types of parts

 \circ model parameter k: max. no. of parts machine can handle

• Case Study: Kanban [Ciardo and Tilgner , 1996]

Kanban Manufacturing System
models a system with four machines
parameter k is the max. no. of machine jobs at a time

Sparse Matrix Storage Schemes

- Coordinate format, Compressed Sparse Row (CSR) schemes

 Store whole matrix with no distinction between diagonal
 and off-diagonal entries
- Modified (compressed) Sparse Row (MSR)

• Four arrays:

- double $\operatorname{Diag}[n]$
- double $\mathrm{Val}[a]$
- int $\operatorname{Col}[a]$
- int $\mathsf{Starts}[n]$

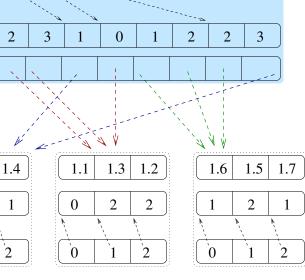
• Bytes required: 12(a+n)

$$\begin{pmatrix} -0.2 & 0 & 0.2 & 0 \\ 0 & -0.9 & 0.4 & 0.5 \\ 0.6 & 0.7 & -0.13 & 0 \\ 0.9 & 0 & 0 & -0.9 \end{pmatrix}$$

$$Diag \quad -0.2 \quad -0.9 \quad -0.13 \quad -0.9 \quad Val \quad 0.2 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.9 \quad Oldson \quad O$$

The Symbolic Representation of a CTMC

0 0 1.5	1.1 0 0 1.1 0 0	Starts 0 3 4
1.3 0 0	0 0 1.3 0 0 1.3	
0 1.4 0	0 0 1.2 0 0 1.2	$Col \qquad 0 \qquad 2 \qquad 3$
0 0	1.5	
1.3 0	0	Val
0 1.4	. 0	
1.1 0 0 0 1.6	0 0 1.6 0	
0 0 1.3 0 0	1.5 0 0 1.5	
0 0 1.2 0 1.7	0 0 1.7 0	Val 1.5 1.3 1.4
	0 1.6 0 0 0 1.5	Col 2 0 1
	0 0 1.5 1.3 0 0	
	0 1.7 0 0 1.4 0	Starts 0 1 2

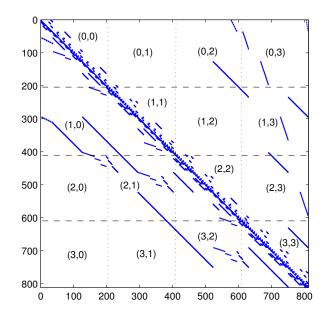


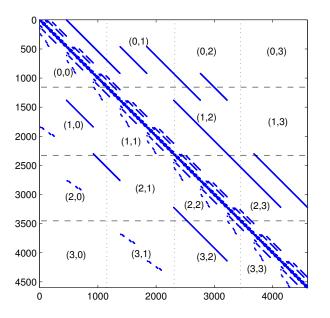
7.

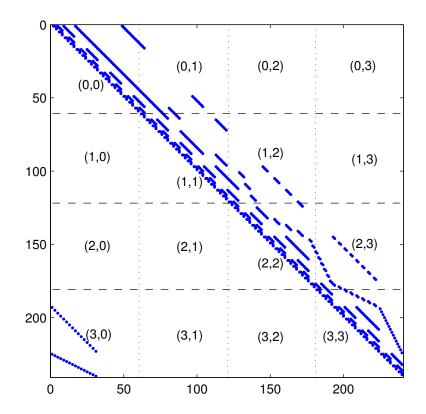
Comparison of Storage Methods

k	States	Off-diagonal	a / n	Memory for Matrix (MB)				
	(n)	nonzeros (a)		MSR	Ind. MSR	Comp.~MSR	MTBDDs	(MB)
]	FMS models	;			
6	537,768	$4,\!205,\!670$	7.82	50	24	17	4	4
10	$25,\!397,\!658$	$234,\!523,\!289$	9.23	2,780	1,366	918	137	194
13	$216,\!427,\!680$	$2,\!136,\!215,\!172$	9.87	$25,\!272$	$12,\!429$	8,354	921	$1,\!651$
14	$403,\!259,\!040$	$4,\!980,\!958,\!020$	12.35	$58,\!540$	$28,\!882$	19,382	1,579	3,077
15	$724,\!284,\!864$	$9,\!134,\!355,\!680$	12.61	107,297	$52,\!952$	$35,\!531$	2,676	5,526
			K	anban mode	ls			
4	454,475	3,979,850	8.76	47	23	16	1	3.5
6	$11,\!261,\!376$	$115,\!708,\!992$	10.27	1,367	674	452	6	86
9	$384,\!392,\!800$	$4,\!474,\!555,\!800$	11.64	$52,\!673$	$25,\!881$	$17,\!435$	99	2,933
10	1,005,927,208	$12,\!032,\!229,\!352$	11.96	$141,\!535$	69,858	46,854	199	7,675
Polling System								
15	$737,\!280$	6,144,000	8.3	73	35	24	1	6
21	66,060,288	$748,\!683,\!264$	11.3	8,820	4,334	2,910	66	504
24	$603,\!979,\!776$	7,751,073,792	12.8	$91,\!008$	$44,\!813$	30,067	144	$1,\!136$
25	$1,\!258,\!291,\!200$	16,777,216,000	13.3	$196,\!800$	96,960	$65,\!040$	317	$1,\!190$

Sparsity Pattern (Kanban and FMS)







The Computations

• A revisit: MVP operation is central to

 $\,\circ\,{\rm Krylov}$ subspace and basic iterative methods for steady state solution

 \circ uniformisation method for transient solution

• An in-core MVP-based Jacobi iteration $r \leftarrow -Q^T \pi$ for i = 0 to n - 1 $\tilde{\pi}_i \leftarrow \pi_i + r_i/q_{ii}$ $r \leftarrow -Q^T \tilde{\pi}$ Test for convergence $\pi \leftarrow \tilde{\pi}$ Repeat iteration if required

The Computations...

• Storage requirement

- Matrix storage in some sparse format
- \circ Two iteration vectors: $2 \times 8n$ Bytes

• Gauss-Seidel

- \circ Typically, converges faster than Jacobi
- \circ Requires one iteration vector
- \circ Standard MVP not possible!
- Partitioning the matrix and vector into blocks can help

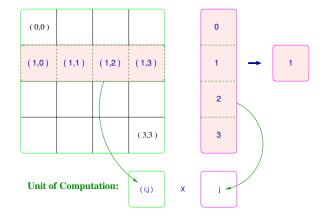
An MVP-based Computation

• Partitioning

- $\circ A: B \times B$ square blocks (not necessary)
- $\circ x$: B blocks with n/B entries each

• A unit of Computation: A sub-MVP

 \circ matrix block \times vector block $(A_{ij} \times X_j)$



A (Serial) Block Jacobi Algorithm

ser_block_Jac(\check{A} , d, b, x, P, n[], ε) {

1.
$$\underline{\operatorname{var}} \tilde{x}, Y, k \leftarrow 0, \operatorname{error} \leftarrow 1.0, i, j, p$$

2. $\underline{\operatorname{while}}(\operatorname{error} > \varepsilon)$
3. $k \leftarrow k + 1$
4. $\underline{\operatorname{for}}(0 \leq i < P)$
5. $Y \leftarrow B_i$
6. $\underline{\operatorname{for}}(0 \leq j < P)$
7. $Y \leftarrow Y - \check{A}_{ij}X_j^{(k-1)}$
8. $\underline{\operatorname{for}}(0 \leq p < n[i])$
9. $X_i^{(k)}[p] \leftarrow D_i[p]^{-1}Y[p]$
10. compute error
11. $X_i^{(k-1)} \leftarrow X_i^{(k)}$ }

Solution Methods for Large Markov Chains (CTMCs), Maths of Networks, 29 June 2007

An Out-of-Core Algorithm

Integer constant: B (number of blocks) Semaphores: S_1 , S_2 : occupied Shared variables: R_0 , R_1 (To read matrix A blocks into RAM)

 $Disk-IO \ process$

Compute process

Local variables: i, j, t = 01. 2.while not converged 3. for $i \leftarrow 0$ to B-1for $j \leftarrow 0$ to B-14. 5.if not an *empty* block disk_read (A_{ij}, R_t) 6. 7. $Signal(S_1)$ 8. $Wait(S_2)$ 9. $t = (t+1) \mod 2$

```
Local variables: i, j, t = 0

while not converged

for i \leftarrow 0 to B - 1

for j \leftarrow 0 to B - 1

Wait(S_1)

Signal(S_2)

if j \neq B - 1

if not an empty block

sub-MVP(A_{ij}X_j, R_t)

else

Update X_i

check for convergence

t = (t + 1) \mod 2
```

Out-of-Core on a Single Machine

Model	k	States	a/n	Times		Iterations
		(n)		Per iteration	Total	
				(seconds)	(hr:min:sec)	
FMS	11	54,682,992	9.5	51.6	23:16:39	1624
	12	$111,\!414,\!940$	9.7	170	$84{:}54{:}20$	1798
	13	$216 \ 427 \ 680$	9.9	327	179:34:39	1977
	14	$403,\!259,\!040$	10.03	1984	—	> 50
	15	724,284,864	10.18	6312	_	> 50
Kanban	7	41,644,800	10.8	18.9	4:12:38	802
\mathbf{System}	8	133,865,325	11.3	139	38:34:21	999
	9	384, 392, 800	11.6	407	$136{:}54{:}37$	1211
	10	1,005,927,208	11.97	1424	566:49:52	1433
Polling	22	138,412,032	11.8	143	1:28:11	37
\mathbf{System}	23	289,406,976	12.3	264	$2{:}47{:}12$	38
	24	603, 979, 776	12.8	460	$4{:}51{:}20$	38
	25	$1,\!258,\!291,\!200$	13.3	1226	$13.16{:}54$	39

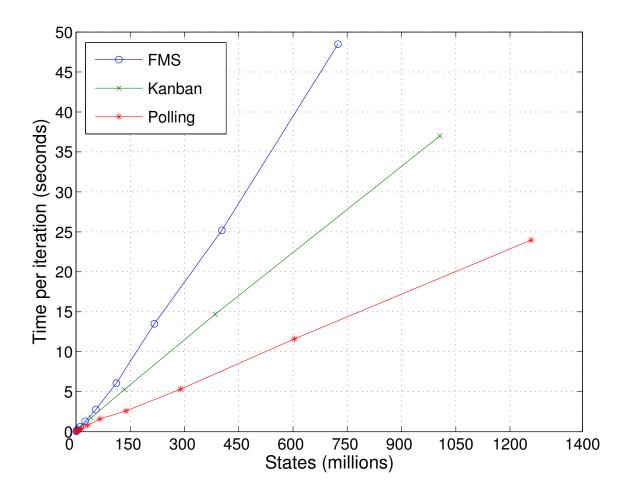
A Parallel Jacobi Algorithm for Process p

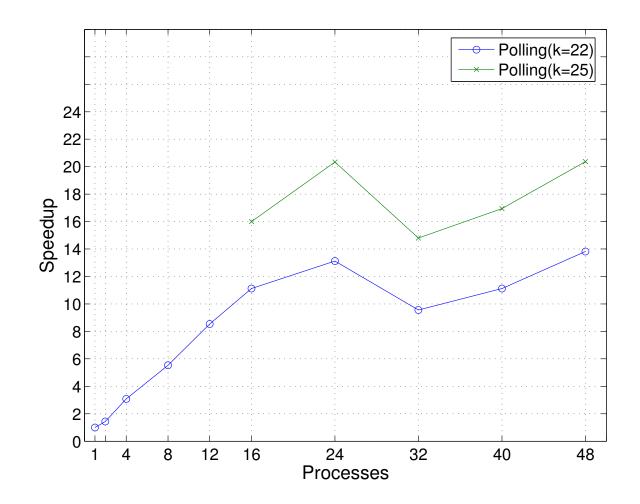
Solution Methods for Large Markov Chains (CTMCs), Maths of Networks, 29 June 2007

Parallel Execution Results on 24 Nodes

k	States	MB/Node	Г	Total						
	(n)		Iteration	Total	Iterations					
			(seconds)	(hr:min:sec)						
	FMS Model									
12	$111,\!414,\!940$	170	6.07	3:40:57	2184					
13	$216 \ 427 \ 680$	306	13.50	8:55:17	2379					
14	$403,\!259,\!040$	538	25.20	18:02:45	2578					
15	$724,\!284,\!864$	1137	48.47	37:26:35	2781					
Kanban System										
7	41,644,800	53	1.73	33:07	1148					
8	$133,\!865,\!325$	266	5.27	2:02:06	1430					
9	$384,\!392,\!800$	564	14.67	$7{:}03{:}29$	1732					
10	$1,\!005,\!927,\!208$	1067	37.00	$21{:}04{:}10$	2050					
Polling System										
22	$138,\!412,\!032$	328	2.60	44:31	1027					
23	$289,\!406,\!976$	667	5.33	1:36:02	1081					
24	$603,\!979,\!776$	811	11.60	3:39:38	1136					
25	$1,\!258,\!291,\!200$	1196	23.97	7:54:25	1190					

Comparison of Solution Times (Iteration)





Applications I am looking at

• Debugging and managing distributed systems

- \circ event-based middleware
- \circ modelling program behaviour
- integration of traditional debugging and model checking
- \circ scheduling and optimisation
- systems security
 - intrusion detection through analysis
- Road traffic and networks
 - \circ real data from M4 motorway
 - city and intercity traffic

Applications I am looking at...

- Optical and storage area networks
 - \circ WDM metro area ring networks
 - SAN extensions and mirroring strategies
- Mobile ad hoc and sensor networks

• mobility, applications, network layer...

- Communications traffic modelling
 - multimedia and servicestransport layer protocols

Summary and Future Work

• State Space Explosion

- discrete state models: CTMCs, DTMCs, MDPs
- \circ symbolic storage does help
- \circ out-of-core and parallel solutions
- \circ the largest models solved, over a billion states
- Apply the developed solution techniques to
 - \circ more interesting real-life case studies
 - build realistic models
 - gain novel insight
- Parallel Algorithms
 - \circ make it more adaptive
 - \circ extend to Grids and ad hoc environments