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m Achievements: Significant performance improvement by cutting planes
» Increase of lower bound on total cost
» Faster achievement of desired quality guarantee
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Summary and Outlook
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WARWICK Two-layer planning problem

Objective: Minimum cost network design

m Single fiber physical WDM network with
80 channels/fiber

m Set of logical links (parallel links for
different physical paths)

m Lightpaths installable at different bitrates
(2.5, 10, or 40 Gbit/s)

m EXCs installable at nodes

m Lower granularity point-to-point demands

m (Survivability against node/link failures by
141 protection)
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WARWICK Two-layer Network Design by ILP

Minimize Node cost + Logical link cost + Physical link cost

m Minimize Node cost + Logical link cost + Physical link cost

subject to

m Routing of demands at logical link layer

m Installation of enough lightpaths on logical links

m Installation of enough EXC capacity at nodes

m Installation of physical links, number of lightpaths per fiber
[

(Diversification of routing for protected demands)
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Objective: Minimization of total network cost

min Z Z c,-'"x,-’"—i—z Z c[’y["—FZcexe (1)

icV meM; ¢el meM, ecE

where

m nodes V, EXCs m € M; at cost ¢/”, variable x/" € {0,1}

m logical links L, modules m € M at cost ¢;”, variable y;” € Z
m physical links E, setup cost c,, variable x, € {0,1}
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THE UNIVERSITY OF

WARWICK Mathematical model — Objective & Demands

Objective: Minimization of total network cost

min Y Y Y v+ ek ()

icV meM; tel meM, ecE

where

m nodes V, EXCs m € M; at cost ¢/”, variable x/" € {0,1}

m logical links L, modules m € M at cost ¢;”, variable y;” € Z
m physical links E, setup cost c,, variable x, € {0,1}

Demands & Commodities

m Demand: point-to-point request

m Commodity: aggregation of demands with same source
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warwickMathematical model — Flow & Logical link capacities

Flow conservation:

N> (-t =vi i€V, kekK

JEV LeLj

m K set of commodities (aggregated point-to-point demands)
m v* demand value of k € K at node i € V

m L logical links connecting i and j, fZ‘U > 0 flow from i to j along /¢

Logical link capacities:
S Y o tet
keK meM,

where fé,k = fZ(ij + fékﬂ and (" capacity (bitrate) of lightpath-type m € M,
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WARWICK Mathematical model — Node capacities

EXC selection:

At most one EXC can be installed at every node i € V

EXC switching capacity:

Z Z Gy +vi <2 Z ™

éEL,‘ mEM@ meM;
~—_——— |
Logical link capacity EXC Capacity

where v := 3", |vK| emanating demand at node i € V
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WARWICK Mathematical model — Physical link capacities

Physical link capacity:

Z Z Y/,fn < Bexe

lele mGM{

where
m B, capacity of e € E (# wavelengths)
m L, set of logical links containing physical link e € E
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THE UNIVERSITY OF

WARWICK Integer Linear Programming

—

objective

LP
solution

m Linear programs can be solved efficiently (in theory and practise)
m (Mixed) Integer linear programs are harder to tackle
m Knowledge about convex hull of integer solutions is needed
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WARWICK Cutting planes

/

objective

cutting plane

new LP
solution

\ /

m Solution to LP relaxation is not part of the convex hull

m Explore problem structure: valid inequalities
m Add violated inequality to LP relaxation: cutting plane
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WARWICK Branch & Bound / Cut

—

objective

solution

SO| utlon

ERE4

m Solution to LP relaxation is fractional in some variables
m Branch on fractional value of integer variable
m Bound solution space by best solution

m Cutting plane + Branch & Bound: Branch & Cut
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Problem-specific cutting planes
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THE UNIVERSITY OF

WARWICK Physical fixed-charge cuts

Physical degree constraint for demand end-nodes i € V
LTS

ecd(i)

Physical tree between all demand end-nodes
D xe=|V|-1

ecE
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Base inequality: af +x <d

i Where f S R+, X € Z+

&
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WARWICK Mixed-Integer Rounding (MIR)

X
MIR-cut Base inequality: af +x <d
d where f S R+, X € Z+
. MIR inequality:  =2=f +x < |d],

f where < d >=d — |d]

Note: MIR introduces integral vertices!
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THE UNIVERSITY OF

WARWICK MIR in higher dimensions

(f,x) € R™ x 7"

m

n
Base: Z ajf; + Z cjixj > d
i=1 j=1

m
MIR: Z <(aj 5+Zch ¢j)xj > Fq c(d)
i=1 J 1

where

Fgc(a) :=r(d,c)[a] — (r(d,c)—r(a, o)t
I:'d7c(a) = r(d,c)at = J@J Fqc(at)/t

Details: see Nemhauser/Wolsey 1988, Raack 2005
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WARWICK MIR-based cutting planes

Important property of MIR functions

m Base inequality valid = MIR inequality valid

Problem-specific MIR-based inequalities

m Construct base inequality a’ f+ ¢'x > _d
~— ~

flow capacity demand
m For all capacity coefficients ¢;:
» Compute Fy ;-MIR inequality and test it for violation.

m Application: MIR cutset, Flow-cut inequalities
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WARWICK MIR cutset inequalities

Base inequality

Given: Cutset Ls on the logical layer
Base inequality: cut capacity > demand

o> Gy >ds

leELs meM,

MIR inequality for each ¢ = C;"™:

Z Z Fas.c(C")ye" > Fas,c(ds)

lelLs meMy
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THE UNIVERSITY OF

WARWICK MIR cutset inequalities

Base inequality

Given: Cutset Ls on the logical layer
Base inequality: cut capacity > demand

SN Gyl > ds

ZGLS mEM[

MIR inequality for each ¢ = C;"™:

Z Z Fas.c(C")ye" > Fas,c(ds)

lelLs meMy

Finding violated inequalities

m N'P-hard, graph shrinking heuristic
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Computations with SCIP (http://scip.zib.de)
17-node German network, no physical fixed-charge cost:

Lower bound over time (root):
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WARWICK Cutting planes: computational results

Computations with SCIP (http://scip.zib.de)
17-node German network, no physical fixed-charge cost:

Lower bound over time (root): Optimality gap over time (2h):
68000 T 10 T T
om0 B

L 6000 6 (—_“

2 g
64000 cm— 2

e e w w T m w w
Close-to-optimal lower bound 1% optimality gap within 5 min
by cutting planes instead of 5.6% after 2h!
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17-node German network with physical fixed-charge cost:

Lower bound over time (root):
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Logical layer MIR- and Flow-cuts:
= only slight improvement
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17-node German network with physical fixed-charge cost:

Lower bound over time (root):

110000

LP observations

soomo m Highly fractional xe variables

95000

105000
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17-node German network with physical fixed-charge cost:

Lower bound over time (root): Lower bound over time (root):
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oweusnn g . ow.corin og
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Logical layer MIR- and Flow-cuts: Also physical-layer cuts needed!
= only slight improvement
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WARWICK Cutting planes: computational results

Lower bound over time with all cuts (4 hours):

Germany17 unprotected with fixed-charge cuts, 4h

105000 T T T T
ithout-p i d-cuts/run.log
with-preprocessing-and-cuts-all/run.log
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Close-to-optimal lower bound!
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Contributions

m Physical layer fixed-charge cuts

m Logical layer mixed-integer rounding cuts

m Significantly reduced optimality gaps and computation times

m Note: currently does not work that well with protected demands
Future research topics

m Scalability: better cope with larger networks

m Survivability: better cope with protected demands

Further reading: ZIB-Report 07-XX — coming soon
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