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Two-layer planning problem
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Objetive: Minimum ost network design
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Objetive: Minimum ost network designSingle �ber physial WDM network with80 hannels/�ber
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Mathematial model
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Two-layer Network Design by ILPMinimize Node ost + Logial link ost + Physial link ostMinimize Node ost + Logial link ost + Physial link ostsubjet toRouting of demands at logial link layerInstallation of enough lightpaths on logial linksInstallation of enough EXC apaity at nodesInstallation of physial links, number of lightpaths per �ber(Diversi�ation of routing for proteted demands)
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Mathematial model � Objetive & DemandsObjetive: Minimization of total network ostmin ∑i∈V ∑m∈Mi mi xmi +
∑

ℓ∈L ∑m∈Mℓ

mℓ ymℓ +
∑e∈E exe (1)wherenodes V , EXCs m ∈ Mi at ost mi , variable xmi ∈ {0, 1}logial links L, modules m ∈ Mℓ at ost mℓ , variable ymℓ ∈ Z+physial links E , setup ost e , variable xe ∈ {0, 1}
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Mathematial model � Flow & Logial link apaitiesFlow onservation:
∑j∈V ∑

ℓ∈Lij(f kℓ,ij − f kℓ,ji) = v ki i ∈ V , k ∈ K (2)K set of ommodities (aggregated point-to-point demands)vki demand value of k ∈ K at node i ∈ VLij logial links onneting i and j , f kℓ,ij ≥ 0 �ow from i to j along ℓLogial link apaities:
∑k∈K f kℓ ≤

∑m∈Mℓ

Cm
ℓ ymℓ ℓ ∈ L (3)where f kℓ = f kℓ,ij + f kℓ,ji and Cm

ℓ apaity (bitrate) of lightpath-type m ∈ MℓCentre for Disrete Mathematis and its Appliations (DIMAP) 9 / 28



Mathematial model � Node apaitiesEXC seletion:
∑m∈Mi xmi ≤ 1 i ∈ V (4)At most one EXC an be installed at every node i ∈ VEXC swithing apaity:

∑

ℓ∈Li ∑m∈Mℓ

Cm
ℓ ymℓ

︸ ︷︷ ︸Logial link apaity +vi ≤ 2 ∑m∈Mi Cmi xmi
︸ ︷︷ ︸EXC Capaity i ∈ V (5)where vi :=

∑k∈K |vki | emanating demand at node i ∈ VCentre for Disrete Mathematis and its Appliations (DIMAP) 10 / 28



Mathematial model � Physial link apaities
Physial link apaity:

∑

ℓ∈Le ∑m∈Mℓ

ymℓ ≤ Bexe e ∈ E (6)whereBe apaity of e ∈ E (# wavelengths)Le set of logial links ontaining physial link e ∈ E
Centre for Disrete Mathematis and its Appliations (DIMAP) 11 / 28



Solving Integer Linear Programs
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Integer Linear Programming
objective

LP
solution

Linear programs an be solved e�iently (in theory and pratise)Centre for Disrete Mathematis and its Appliations (DIMAP) 13 / 28
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Integer Linear Programming
objective

LP
solution

Linear programs an be solved e�iently (in theory and pratise)(Mixed) Integer linear programs are harder to takleKnowledge about onvex hull of integer solutions is neededCentre for Disrete Mathematis and its Appliations (DIMAP) 13 / 28



Cutting planes
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Cutting planes
objective

cutting plane

solution
new LP

Solution to LP relaxation is not part of the onvex hullExplore problem struture: valid inequalitiesAdd violated inequality to LP relaxation: utting planeCentre for Disrete Mathematis and its Appliations (DIMAP) 14 / 28



Branh & Bound / Cut
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solution
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Branh & Bound / Cut
new LP

new LP
solution

objective

solution

Solution to LP relaxation is frational in some variablesBranh on frational value of integer variableBound solution spae by best solutionCentre for Disrete Mathematis and its Appliations (DIMAP) 15 / 28



Branh & Bound / Cut
new LP

new LP
solution

objective

solution

Solution to LP relaxation is frational in some variablesBranh on frational value of integer variableBound solution spae by best solutionCutting plane + Branh & Bound: Branh & CutCentre for Disrete Mathematis and its Appliations (DIMAP) 15 / 28



Problem-spei� utting planes
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Physial �xed-harge utsPhysial degree onstraint for demand end-nodes i ∈ V
∑e∈δ(i) xe ≥ 1Physial tree between all demand end-nodes

∑e∈E xe ≥ |V | − 1
Centre for Disrete Mathematis and its Appliations (DIMAP) 17 / 28



Mixed-Integer Rounding (MIR)
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Base inequality: af + x ≤ dwhere f ∈ R+, x ∈ Z+
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Mixed-Integer Rounding (MIR)
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MIR-cut Base inequality: af + x ≤ dwhere f ∈ R+, x ∈ Z+MIR inequality: a1−<d>
f + x ≤ ⌊d⌋ ,where < d >= d − ⌊d⌋Note: MIR introdues integral verties!
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MIR in higher dimensions
(f , x) ∈ R

m × Z
nBase: m∑i=1 aj fj +

n∑j=1 jxj ≥ dMIR: m∑i=1 F̄d , (aj )fj +
n∑j=1 Fd , (j )xj ≥ Fd , (d)where Fd , (a) := r(d , ) ⌈a⌉ − (r(d , ) − r(a, ))+F̄d , (a) := r(d , )a+ = limtց0Fd , (at)/tDetails: see Nemhauser/Wolsey 1988, Raak 2005Centre for Disrete Mathematis and its Appliations (DIMAP) 19 / 28



MIR-based utting planesImportant property of MIR funtionsBase inequality valid ⇒ MIR inequality validProblem-spei� MIR-based inequalitiesConstrut base inequality aT f
︸︷︷︸�ow + T x

︸︷︷︸apaity ≥ d
︸︷︷︸demandFor all apaity oe�ients j :

◮ Compute Fd,j -MIR inequality and test it for violation.Appliation: MIR utset, Flow-ut inequalities
Centre for Disrete Mathematis and its Appliations (DIMAP) 20 / 28



MIR utset inequalities
SCut LF
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Ma

Base inequalityGiven: Cutset LS on the logial layerBase inequality: ut apaity ≥ demand
∑

ℓ∈LS ∑m∈Mℓ

Cm
ℓ ymℓ ≥ dSMIR inequality for eah  = Cm0

ℓ :
∑

ℓ∈LS ∑m∈Mℓ

FdS ,(Cm
ℓ )ymℓ ≥ FdS ,(dS )
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∑

ℓ∈LS ∑m∈Mℓ

Cm
ℓ ymℓ ≥ dSMIR inequality for eah  = Cm0

ℓ :
∑

ℓ∈LS ∑m∈Mℓ

FdS ,(Cm
ℓ )ymℓ ≥ FdS ,(dS )Finding violated inequalities

NP-hard, graph shrinking heuristiCentre for Disrete Mathematis and its Appliations (DIMAP) 21 / 28



Computational results
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Cutting planes: omputational resultsComputations with SCIP (http://sip.zib.de)17-node German network, no physial �xed-harge ost:Lower bound over time (root):
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Optimality gap over time (2h):
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Cutting planes: omputational results17-node German network with physial �xed-harge ost:Lower bound over time (root):
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⇒ only slight improvement

LP observationsHighly frational xe variablesGap from physial layer!
⇒ Use degree and tree uts!
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Cutting planes: omputational resultsLower bound over time with all uts (4 hours):
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Summary and OutlookContributionsPhysial layer �xed-harge utsLogial layer mixed-integer rounding utsSigni�antly redued optimality gaps and omputation timesNote: urrently does not work that well with proteted demandsFuture researh topisSalability: better ope with larger networksSurvivability: better ope with proteted demandsFurther reading: ZIB-Report 07�XX � oming soon
Centre for Disrete Mathematis and its Appliations (DIMAP) 27 / 28
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