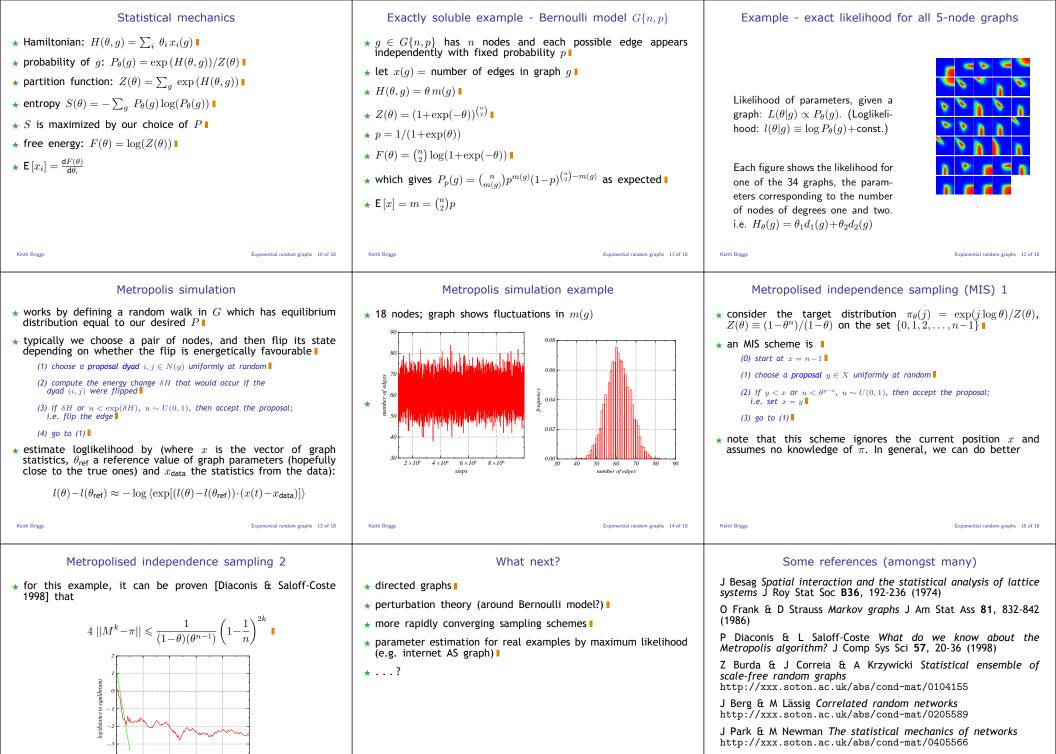
Exponential random graphs Keith Briggs Keith Briggs@bt.com http://keithbriggs.info MoN4 QMUL 2005 Jul 22 1215 corrected version 2005 July 25 16:18	 Shi Zhou and Raúl Mondragón Accurately modeling the internet topology Phys. Rev. E 70 066108 (2004) Network parameters: number of nodes, humber of links. Iverage degree, hyponent of power law, lich-club connectivity, imaximum degree, legree distribution, characteristic path length, iverage triangle coefficient, maximum rtiangle coefficient, iverage quadrangle coefficient, maximum betweenness girth, spectrum, 	Motivation * we use many random graph models in network applications * but rarely specify the statistical ensemble precisely * so even the averages we compute are suspect * and even the famous Barabási-Albert scale-free model has known problems we need a unified, rigorous framework * related ideas in earlier literature: > Markov random fields > p [*] models of social networks > lsing-type models in physics > agricultural field trials >
Exponential random graphs 1 of 18	Keith Briggs Exponential random graphs 2 of 18	Keith Briggs Exponential random graphs 3 of 18
 Dependency graphs (Frank, Strauss, Besag,) * consider a random vector X = (X₁, X₂,,X_m). * P(x) = exp(Q(x))/∑ exp Q(x) ⇔ Q(x) = log P(x)+const ▷ only restriction P(x) > 0 ∀x. * let D be the dependency graph of X; i.e. i ~ j ⇔ x_i not ndependent of x_j. e.g. all x_i independent: empty graph. e.g. watkov chain: line graph. e.g. multivariate Gaussian: complete graph (generically). * inclusion-exclusion principle Q(x) = ∑_{s ⊆ {1,2,,m}} λ_s(x_s). x_s ≡ components of x corresponding to elements of s. P_[∩,A,] = ∑_iP_[A,] - ∑_{i < j}P_[A,i ∪ A,j]+	 harkov graphs to apply to a graph g with edge dependencies, let X be the edge indicator functions. this defines the dependency graph D(g) of g: D(g) contains and edge (i, j) if X_i and X_j (i ≠ j) are dependent. definition: g is Markov if D(g) contains no edge between edges which are disjoint in E(g). to other words, edges can only 'interact' if they share a common end-point. 	$ \begin{array}{c} \text{Markov graph example } (n = 4, m = 5) \\ & & & \\ & $
Homogeneous Markov graphs 1 * if we require all isomorphic graphs to have the same proba- bility, then a further simplification results: I * let $t(g)$ be the number of triangles in g I * let $s_k(g)$ be the number of k -stars in g I * then $P(g)$ can only depend on $t(g)$ and $s_k(g)$, in the form $P_{\beta}(g) = \frac{1}{Z(\beta)} \exp \left[\beta_0 t(g) + \sum_{k=1}^{n-1} \beta_k s_k(g)\right]$ where β_i are fixed parameters I * here $Z(\beta) = \sum_g \exp \left[\beta_0 t(g) + \sum_{k=1}^{n-1} \beta_k s_k(g)\right]$	Homogeneous Markov graphs 2 * alternatively, we may use d_j , the number of nodes of degree $j \ (s_k(g) \equiv \sum_{j \ge k} {j \choose k} d_j(g))$ * and let $\theta_k(g) \equiv \sum_{k \le j} {j \choose k} \beta_k$; then $P_{\theta}(g) = \frac{1}{Z(\theta)} \exp \left[\theta_0 t(g) + \sum_{j=1}^{n-1} \theta_j d_j(g) \right]$ * in other words, the Hamiltonian <i>can only be</i> a linear function of the number of triangles and k-stars * note: if A if the adjacency matrix of g, then $m(g) = d_1(g) =$ tr $(A^2)/2$ is the number of edges and $t(g) = \operatorname{tr} (A^3)/6$	$\begin{aligned} & \text{Exponential random graphs} \\ \star \text{ fix a number of nodes } n \\ \star \text{ consider the set } G(n) \text{ of all graphs on } n \text{ nodes } \\ \star \text{ we will assign to each } g \in G(n) \text{ a probability } P(g) \\ \star \text{ let } x = \{x_1, x_2, \dots\} \text{ be a set of functions on } G(n) \text{ representing properties we are interested in, for example} \\ & > x_1(g) = number \text{ of edges} \\ & > x_2(g) = number \text{ of nodes of degree } 3 \\ & > x_3(g) = number \text{ of triangles} \\ \hline \\ \star \text{ we then assign the probabilities } P \text{ by} \\ & P_{\theta}(g) = \frac{1}{Z(\theta)} \exp(\theta_1 x_1 + \theta_2 x_2 + \dots) \\ & \text{where } Z(\theta) = \sum_{g \in G(n)} \exp(\theta_1 x_1 + \theta_2 x_2 + \dots) \end{aligned}$

Keith Briggs

Exponential random graphs 9 of 18



200

400 600

steps

800 1000

Keith Briggs