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Abstract

Self-similar processes appear in telecommu-

nications, finance, medicine and hydrology.

By considering the crossings of size 2−n made

by a continuous process, for n = 0,1,2, ...,

one can build a tree of crossings which en-

codes the sample path. If the process is self-

similar, then the number of subcrossings as-

sociated with a crossing of size 2−n will be

independent of n, and the expected number

of subcrossings will be a simple function of

the Hurst index H. These observations lead

to a test for self-similarity and an estimator

for H.

We can also define a class of self-similar pro-

cesses, by setting the crossing tree to be

a branching process. We call these EBP-

processes, for ‘Embedded Branching Process’.

They are easily fitted to data, can be effi-

ciently simulated on-line, and can be used

for forecasting.
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Self-Similar Processes

Continuous process X is self-similar if

X(t)
d
= a−HX(at), for H ∈ (0,1).

H is the Hurst index, and measures space/time

scaling.

The canonical example is Fractional Brown-

ian Motion (FBM), BH, which is the contin-

uous Gaussian process with autocovariance

function

Cov (BH(s), BH(t)) =
σ2

2
(s2H+t2H−|t−s|2H).

Increments are normal: BH(s + t) − BH(s) ∼
N(0, σ2t2H).

Check the autocovariance of BH(at):

σ2

2 ((as)2H + (at)2H − |a(t − s)|2H)

= a2H σ2

2 (s2H + t2H − |t − s|2H).

which is the autocovariance of aHBH(t).
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FBM H = 0.7 at 3 different scales. The

rescaled processes all behave similarly.
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Telecommunications: Packet Arrivals

We take as raw data packet arrival data, that

is packet arrival times and packet lengths,

which we represent as an on-off process.

We obtain a continuous-time representation

by integrating the on-off arrival process, then

subtracting mt where m is the mean arrival

rate.
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Here the Bellcore trace BCAug89 is repre-

sented as a continuous process. The trace is

plotted at two-scales to illustrate self-similarity
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Other examples of self-similar processes in-

clude: financial time series; ECG and EEG

traces; wind and rainfall; hydrological time

series.



Time Series Viewpoint

Suppose X : R+ → R, put Y (n) = X(n+1)−
X(n), then self-similarity for X is equivalent

to

Y
d
= m1−HY m

where

Y m(k) =
1

m

(k+1)m−1∑
n=km

Y (m)

=
1

m
(X((k + 1)m) − X(km)).

If Y is self-similar and stationary with finite

variance, then its autocorrelation has the form

ρ(k) = 1
2(|k + 1|2H − 2k2H + |k − 1|2H)

∼ ck2H−2 as k → ∞.

If Y is also Gaussian then X is FBM. Call

Y Fractional Gaussian Noise (FGN) in this

case.

6



Long-Range Dependence

Stationary time series Y is long-range depen-

dent (LRD) if ρ(k) decays slowly enough that

∞∑
k=0

ρ(k) = ∞.

Self-similarity =⇒ ρ(k) ∼ ck2H−2 =⇒ LRD

for H ∈ (1
2,1).

Conversely, if ρ(k) ∼ ck2H−2 for some H ∈
(1
2,1), then Y m converges to a 2nd-order self-

similar process as m → ∞. That is, it con-

verges to a process with autocorrelation

ρ(k) = 1
2(|k + 1|2H − 2k2H + |k − 1|2H).

Note that this description of LRD requires

finite variances, which is not the case in many

practical situations.
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Crossings Viewpoint

Given any continuous process X, we get a

discrete process X0 by observing X when it

hits points in Z.

0 100 200 300 400 500 600 700 800 900 1000
−60

−40

−20

0

20
sample path and crossings

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

35
crossing tree (points give start of crossing)

cr
os

si
ng

 s
iz

e

We get a sequence of discrete processes X0,

X1, X2, . . ., by observing X when it hits

points in Z, 2Z, 4Z, . . .. There is a natu-

ral tree structure to the crossings.
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For any continuous process we can construct

a crossings tree from crossing of size

. . . ,2−2,2−1,1,2,22, . . . .

If X is self-similar, then the number of sub-

crossings that make up a crossing of size 2k

does not depend on k.

The expected number of sub-crossings µ tells

us the space/time scaling.

If we scale space by 2k then must scale time

by µk to get crossings of same length.

X(t)
d
= 2−kX(µkt) = (µk)− log 2/ logµX(µkt).

So the Hurst index is

H = log2/ logµ.
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Testing for Self-Similarity

Start by determining scale for smallest cross-
ings. Call this the resolution δ.
δ has to be large enough to cover linear seg-
ments or jumps.

Build the crossing tree up from the bottom,
then count family sizes.

Z1
1 , Z1

2 , . . . , Z1
n1

Z2
1 , Z2

2 , . . . , Z2
n2

...

Zm
1 , Zm

2 , . . . , Zm
nm

Here Zk
i is the number of subcrossings of size

δ2k−1 that make up the i-th crossing of size
δ2k.
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If the sequence Zk
1, Zk

2, . . . is ergodic, then we

can estimate the distribution of Zk
i empiri-

cally. Let

pk(x) = P(Zk
i = x),

pk = (pk(0), pk(1), . . .).

If the process X is self-similar, then

pk = pl for all k and l

In practice we find that self-similarity holds

for only a finite range of scales. For any

k < l, we use a contingency table to test the

hypothesis

Zk
i

d
= Zk+1

i
d
= · · · d

= Zl
i.
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Estimate for H

H = log2/ logµ where µ is the expected num-

ber of subcrossings. If Zk
1, Zk

2, . . . is ergodic,

then µ̂k = Zk is a consistent estimator for µ.

Estimator for scaling index at scale δ2k is

Ĥk = log2/ log µ̂k.

If we believe that self-similarity holds over

scales δ2k to δ2l, then we can combine these

levels to get a more accurate estimate

µ̂k,l =
nkZk + nk+1Zk+1 + · · · + nlZ

l

nk + nk+1 + · · · + nl

Ĥk,l = log2/ log µ̂k,l.
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FBM
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Packet Arrivals: LAN and WAN Data
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Packet Arrivals: York Data
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Maximum Likelihood Estimate for H

If we assume that the crossings tree is a

branching process, then we can obtain its

likelihood function. In this case the Zk
i are

i.i.d. and, supposing we observe levels k to l,

Ĥk,l is the MLE of H.

Moreover, we have that µ̂k is unbiassed (though

not µ̂k,l) and given nl, for h = l − k

µ̂k,l ≈ N

(
µ,

σ2

nl

µ2h+3 − 1 − (2h + 1)µh+1(µ − 1)

(µh+1 − 1)2(µ − 1)

)
,

where µ = EZ
j
i and σ2 = Var Z

j
i .

The MLE of σ2, given we observe levels k to

l, is

σ̂2
k,l =

1∑l
j=k nj

l∑
j=k

nj∑
i=1

(Zj
i − µ̂k,l)

2.
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Transform Bias

A bias is introduced by the log transform

Ĥ = log2/ log µ̂. This bias is proportional to

Var µ̂, so decays quickly as the sample size

increases, and can be estimated given an es-

timate of Var µ̂.

Finite Sample Bias

We observe X(t) over a finite time interval

[0, T ]. Large crossings are thus biassed to be

shorter than they should, which results in an

underestimate of µ (overestimate of H) at

large scales.

The bias can be quantified in special cases,

and decays quickly.
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Confidence interval for H

Consider the estimator Ĥk based on a single

level k. Under the hypothesis that the cross-

ings tree is a branching process, the subcross-

ing sizes Zk
i are all independent.

In practice, we can find small but significant

correlation in the sequence Zk
1, Zk

2, . . ..

For FBM we observe empirically that

ρ(r) = Corr (Zk
i , Zk

i+r) ≈ cr−α for r ≥ 1

(c.f. analogous result for wavelets).

We must account for this when estimating

Var µ̂k. If α ≤ 1 then the Zk
i sequence is

long-range dependent.
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Application to Time Series

If we only observe the process at regular time

points then we may not see all the small

crossings.

Top diagram gives a sample path and all its

crossings. Bottom diagram gives crossings

observed if the process is sampled at regular

points (the solid dots).
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Missing crossings introduce a bias in µ̂, which

we can fix at the expense of increasing the

variance, simply by increasing the base reso-

lution δ.

We can get some accuracy back by using the

‘Random Midpoint Displacement’ algorithm

to simulate extra points in between the ob-

served values. This is a quick fix with no

theoretical backup however.

We require an estimate of H to apply the

Random Midpoint Displacement algorithm,

necessarily this must come from the data, so

our estimate for H based on the augmented

data will not be as accurate as we think it

is. Also, the Random Midpoint Displacement

algorithm is known to have problems of its

own.
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FBM Time Series
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Time Heterogeneous H

Fix scale at δk = δ2k. This splits the time

into crossings, with expected length t0µk, where

t0 ≈ δ1/H is the expected time to move dis-

tance δ.

Each crossing of size δk gives rise to a sub-

set of the crossings tree, from which we can

estimate H and the subcrossing distribution.

The contingency table test for equality of

subcrossing distributions provides a tool for

detecting changes in H.
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Using simulated traces we tested the ability
of the contingency table to detect a change
in H. FBM with different values of H were
concatenated then change points were esti-
mated and H calculated for each region.

In the following figures the solid line is the
target value of H. The dotted lines give es-
timates for 10 different simulation runs

To test for false positives FBM with constant
H was checked for change points. 2 out of
10 traces seemed to have a change in H



Changing m and H in packet traces

A self-similar process is obtained from an on-

off packet arrival trace by integrating then

subtracting mt, where m is the mean arrival

rate. The crossing tree will reflect changes

in either H or m (or both).

Experiments with simulated traces indicate

that the contingency table test is more sen-

sitive to changes in m than to changes in H.
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Non-stationarity of York traffic data

Time variation of Hurst index for York data.

Using four different scales δk to split the trace

into blocks, changes in H and m were esti-

mated. Each gave very similar results.

The following figure gives plots of H against

time for each choice of δk
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Non-stationarity of Bellcore traffic data

Bellcore traces BCAug89, BCOct89, LBL3,

LBL4 and LBL5.



Using blocks defined by crossings of size 210

(crossing times in the order of 5 minutes) the

following changes in H were detected.

Trace Time (min.) H

BCAug89 (0.0 51.0] 0.82 ± 0.02
BCOct89 (0.0 20.0] 0.81 ± 0.03

(20.0 28.7] 0.74 ± 0.03
LBL3 (0.0 120.0] 0.90 ± 0.02
LBL4 (0.0 54.3] 0.90 ± 0.02

(54.3 60.0] 0.81 ± 0.10
LBL5 (0.0 33.9] 0.80 ± 0.04

(33.9 57.4] 0.87 ± 0.03



EBP Processes

Every continuous process has an embedded

crossing tree, and given the crossing tree we

can generate the process.

We obtain a large class of self-similar pro-

cesses by generating a crossing tree from a

branching process. Call this class of pro-

cesses Embedded-Branching-Process (EBP)

processes.

Use EBP processes to model self-similar pro-

cesses. They are easy to fit, efficient to sim-

ulate, and can be used for forecasting.
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Simulating EBP Processes

Can simulate EBP process “on-line”. That
is, having simulated the first n crossings, we
can generate the next crossing on demand.

The simulation uses a representation of the
process as an ∞-dim Markov chain.
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A state of the Markov chain records, for each

level k ∈ Z, the number and orientation of

subcrossings, and which of these subcross-

ings is current (that which contains X(t)).

The crossings are nested, in that the sub-

crossings at level k are a refinement of the

current crossing at level k + 1.

We can increment crossings of size 2k one at

a time, until we reach the end of the current

2k+1 crossing. At this point we increment a

crossing of size 2k+1, and use it to generate

a consistent set of 2k subcrossings, then set

the current 2k to be the first of these.

In practice we can truncate the sequence of

crossings below at level k = 0. That is, we

take crossings of size 1 as our smallest cross-

ings.
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To simulate X(t) we start with crossings of
size 1. The first time we reach the end of a
crossing of size 2k+1, we need to know where
it sits in the current crossing of size 2k+2.

This is equivalent to sampling at random from
the current generation of a branching pro-
cess, and asking the size of the family the
selected individual lies in. If

p(j) = P(j subcrossings),

then the sampling distribution for the number
of subcrossings in the current crossing is

jp(j)/µ.

To finish the simulation, we need the crossing
times for the crossings of size 1. These are
i.i.d., with distribution equal to the normed
limit W of the branching process. We have
an efficient method for simulating W .

The final algorithm takes time O(n) and stor-
age O(logn) to generate n steps. It is on-line
in that, having generated n steps, you can
generate step n + 1 on demand.
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Forecasting for EBP Processes

The ∞-dim Markov representation of an EBP

process can also be used for forecasting.

The current state of the Markov chain can

be inferred from the crossings tree. Given

this, we use Monte Carlo simulations of the

process to estimate its future behaviour.
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