Large-deviation properties of random graphs

Alexander K. Hartmann A. Engel, M. Mézard, R. Monasson

Instituts for Physics University Oldenburg

MoN, Loughborough University, 16. September 2011

Computational Physics Group

Computer Science

Physics

Computer simulations new algorithms

Optimization algorithms development/applications

Computational Physics Group

Computer Science

Physics

Computer simulations new algorithms

Optimization algorithms development/applications

systems with 10⁶ particles

NEW:

[AKH, Practical Guide to Computer Simulations, World Scientific, 2009]

Disordered magnets

Spin glasses Random-field systems

Bioinformatics

RNA secondary structures Sequence alignments

Phase transitions in optimization problems Vertex cover Satisfiability Large-deviations properties Disordered Systems Random graphs

Large-deviation properties

- Typical properties (probabilities 10⁻⁶..1): easy to get by simple sampling simulations
- Sometimes wanted: large deviation properties (of quenched-disorder ensembles)

10 10-4 n=m=400, N=104 10-8 10^{-12} p(S) 10-16 10-20 10-24 p(S'>S 10⁻²⁸ 150 0 50 100 200 250 300 S

- Examples:
 - Biological sequence (protein) alignment: small-probability (significant) scores [AKH, PRE 2001]
 - Distribution of the number of components of random graphs [A. Engel, R. Monasson, AKH, J. Stat. Phys. 2004]
 - Calculation of partiction functions in statistical mechanics [AKH, Phys. Rev. Lett. 2005]

Graph ensembles

Graph ensembles

Graph G = (V, E)

connected components: transitive closure of "connectivity relation"

Graph ensembles

Graph G = (V, E)

connected components: transitive closure of "connectivity relation"

Random graphs:

here: N vertices, each edge tentative (ij) with prob. p.

 Erdős-Rényi: (*ij*) ∈ N⁽²⁾, *p* = *c*/N → finite connectivity *c*
 two-dimensional percolation: (*ij*) ∈ square lattice, *p* = const

Physics Approach

 \leftrightarrow

Idea: model

quenched realisation \leftrightarrow quantity "score" $S \leftrightarrow$ (ground state: often known) simulate at finite TMonte Carlo moves: change realisat. a bit

- Simulation at different *T* (using (MC)³/PT)
 Example (sequence alignment) equilibration: start with ground state/ with random state
 - Wang-Landau approach

physical system

degrees of freedom \vec{x} (state) energy $E(\vec{x})$

Distribution of Scores

- Raw result \rightarrow (simple $\leftrightarrow T = \infty$) at low T: high scores prefered
- MC moves: $\vec{x} \rightarrow \vec{x}'$ change on "element" probability = f_a

 $Pr(acceptance) = \min\{1, \frac{\exp(S(\vec{x}')/T)}{\exp(S(\vec{x})/T)}\} = \min\{1, e^{\Delta S/T}\}$

 $\Rightarrow \text{ equilibrium distribution } Q_{T}(\vec{x}) = P(\vec{x})e^{S(\vec{x})/T}/Z(T)$ $\text{ with } P(\vec{x}) = \prod_{i} f_{x_{i}}, \ Z(T) = \sum_{\vec{x}} P(\vec{x})e^{S(\vec{x})/T}$ $\Rightarrow \rho_{T}(S) = \sum_{\vec{x},S(\vec{x})=S} Q_{T}(\vec{x}) = \frac{\exp(S/T)}{Z(T)} \sum_{\vec{x},S(\vec{x})=S} P(\vec{x})$ $\Rightarrow p(S) = \rho_{T}(S)Z(T)e^{-S/T}$ [AKH, PRE 2001] Match Distriutions

Results: Erdős-Rényi

Size *S* of largest component (connectivity *c*)

[AKH, Eur. Phys. J. B (2011)]

- **a** Rate function $\Phi(s) \equiv -\frac{1}{N} \log P(s)$, s = S/N
- Comparison with exact asymptotic result [M. Biskup, L. Chayes, S.A. Smith, Rand. Struct. Alg. 2007]
 - \rightarrow evaluate algorithm \rightarrow works very well
- \rightarrow finite-size corrections visible

Phase transition

- Cluster size as function of (artificial) temperature
 - 1st order transition in percolating phase

ightarrow large system sizes not fully accessible

Two-dimensional percolation

- $\blacksquare N = L \times L, \text{ edge density } p$
- No exact result known (to me)
- Results comparable to Erdős-Rényi random graphs but stronger finite-size effects

- Diameter $d^* :=$ Longest of all shortest $i \rightarrow j$ paths
 - Random graphs: (c < 1): Gumbel distribution

$$Pr_{G}(d^{\star} = d) = \lambda e^{-\lambda(d-d_{0})} e^{-e^{-\lambda(d-d_{0})}}$$

Explanation: graph = forest $d = \max_{\text{trees } T} d(T)$ \rightarrow Gumbel distribution

Fit to

$$P(d) = P_G(d)e^{-a(d-d_0)^2}$$

"gaussianized" Gumbel [AKH, M. Mézard, in preparation]

Close to c = 1, asymptotically

$$\lambda(c) = -\log c$$

Percolating region: more complex distributions

- Large-deviation properties
- Simulation approach: study system at artificial finite temperature (or, in principle, Wang-Landau algorithm + modifications)
- Full distribution of size of largest component
- Erdős-Rényi random graphs: matches well analytics 1st order transition in percolating phase
- 2d percolation: like ER model, stronger finite-size effects
- Distribution of number of components: agreement with statistical mechanics approach
- Distribution of diameter:
 - c < 1: Gumbel distribution, matches theory
 - c > 1: complex distribution, no theory

Work more efficiently: read/write/edit scientific paper summaries www.papercore.org (open access)