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Disordered magnets
Spin glasses
Random-field systems

Phase transitions in
optimization problems
Vertex cover
Satisfiability

Bioinformatics
RNA secondary structures
Sequence alignments
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Large-deviations properties
Disordered Systems
Random graphs
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Large-deviation properties

Typical properties
(probabilities 10−6..1):
easy to get by simple
sampling simulations
Sometimes wanted:
large deviation properties
(of quenched-disorder
ensembles)
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Examples:

- Biological sequence (protein) alignment:
small-probability (significant) scores [AKH, PRE 2001]

- Distribution of the number of components of random graphs
[A. Engel, R. Monasson, AKH, J. Stat. Phys. 2004]

- Calculation of partiction functions in statistical mechanics
[AKH, Phys. Rev. Lett. 2005]
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Graph ensembles

Graph G = (V ,E)

connected components:
transitive closure of “connectivity
relation”
Random graphs:
here: N vertices, each edge
tentative (ij) with prob. p.

Erdős-Rényi: (ij) ∈ N(2),
p = c/N → finite connectivity c
two-dimensional percolation:
(ij) ∈ square lattice, p = const
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Erdős-Rényi: (ij) ∈ N(2),
p = c/N → finite connectivity c
two-dimensional percolation:
(ij) ∈ square lattice, p = const

5 / 15



Physics Approach
Idea:
model ↔ physical system
quenched realisation ↔ degrees of freedom ~x (state)
quantity “score” S ↔ energy E(~x)

(ground state: often known)
simulate at finite T
Monte Carlo moves:
change realisat. a bit

Simulation at different T
(using (MC)3/PT)
Example
(sequence alignment)
equilibration:
start with ground state/
with random state
Wang-Landau approach 0 5000 10000 15000 20000
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Distribution of Scores

Raw result −→
(simple↔ T =∞)
at low T :
high scores prefered
MC moves: ~x → ~x ′

change on “element”
probability = fa
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Pr(acceptance) = min{1, exp(S(~x ′)/T )
exp(S(~x)/T )

} = min{1,e∆S/T}

⇒ equilibrium distribution QT (~x) = P(~x)eS(~x)/T/Z (T )
with P(~x) =

∏
i fxi , Z (T ) =

∑
~x P(~x)eS(~x)/T

⇒ pT (S) =
∑

~x ,S(~x)=S QT (~x) = exp(S/T )
Z (T )

∑
~x ,S(~x)=S P(~x)

⇒ p(S) = pT (S)Z (T )e−S/T [AKH, PRE 2001]
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Match Distriutions

[
p(S) = pT (S)Z (T ) exp(−S/T )

]
rescaling with exp(−S/T )
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agrees with large statistics simple sampling
agrees with (for this example) known exact result
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Results: Erdős-Rényi

Size S of largest component (connectivity c)

[AKH, Eur. Phys. J. B (2011)]
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Rate function Φ(s) ≡ − 1
N log P(s), s = S/N

Comparison with exact asymptotic result
[M. Biskup, L. Chayes, S.A. Smith, Rand. Struct. Alg. 2007]

→ evaluate algorithm→ works very well
→ finite-size corrections visible
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Phase transition

Cluster size as function of (artificial) temperature
1st order transition in percolating phase

→ large system sizes not fully accessible
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Two-dimensional percolation

N = L× L, edge density p
No exact result known (to me)
Results comparable to Erdős-Rényi random graphs
but stronger finite-size effects
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Graph Diameter
Diameter d? :=
Longest of all
shortest i → j paths
Random graphs: (c < 1): Gumbel distribution

PrG(d? = d) = λe−λ(d−d0)e−e−λ(d−d0)

Explanation:
graph = forest
d = maxtrees T d(T )
→ Gumbel distribution
Fit to

P(d) = PG(d)e−a(d−d0)2

“gaussianized” Gumbel
[AKH, M. Mézard, in preparation] 0 50 100
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Close to c = 1, asymptotically

λ(c) = − log c

[T. Luczak, Rand.Struct.Alg., 1998]
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Percolating region:
more complex distributions
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Summary
Large-deviation properties
Simulation approach:
study system at artificial finite temperature
(or, in principle, Wang-Landau algorithm + modifications)

Full distribution of size of largest component
Erdős-Rényi random graphs: matches well analytics
1st order transition in percolating phase
2d percolation: like ER model, stronger finite-size effects
Distribution of number of components:
agreement with statistical mechanics approach
Distribution of diameter:
c < 1: Gumbel distribution, matches theory
c > 1: complex distribution, no theory

Work more efficiently: read/write/edit scientific paper summaries
www.papercore.org (open access)
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