#### Inferring AS Relationships from BGP Attributes

#### Vasileios Giotsas, Shi Zhou Department of Computer Science, UCL

MoN10: Tenth Mathematics of Networks meeting, September 2011

## **UC**

#### Introduction

• The Internet is a Network of Networks



**Routers Topology** 

#### Introduction

• The Internet is a Network of Networks



**Routers Topology** 

#### Introduction

• The Internet is a Network of Networks



**Routers Topology** 

Autonomous Systems Topology

#### Why AS Topology?

- Two levels of routing
  - Intra-domain routing
  - Inter-domain routing Border Gateway Protocol (BGP)
- Performance
- Traffic Engineering
- Security
- Business policies/economics

## **UCL**

#### **Autonomous Systems Business Relationships**

- Customer-to-Provider (c2p)
  Paid transit
- Peer-to-Peer (p2p)
  - Free bilateral transit, routing restrictions
- Sibling-to-Sibling (s2s)
  - Free bilateral transit, no restrictions

## **UC**

#### Why AS Relationship?



### **UC**

#### Why AS Relationship?



#### **Valley-Free Paths**



#### **Non Valley-Free Paths**



### <sup>±</sup>UCL

#### **Valley-Free Routing**



#### **Valley-Free Routing**



#### **Valley-Free Routing**



#### **Valley-Free Routing**



A C D : Valley-Free A B E F : Valley-Free B A C : Non Valley-Free A C D F: Non Valley-Free





#### **AS Relationship Inference Problem**

- AS relationships are not publicly disclosed
- How to assign AS relationships to AS edges given the publicly available BGP/traceroute data?

# AS Relationship Inference: Existing Approaches

- AS Topology + Heuristics
- Maximize the number of valley-free paths
- p2p relationships are agreed between ASes of comparable degree
- All p2c AS edges will cross the Tier-1
- All long-lived paths (> 2 days) are valley-free

# AS Relationship Inference: Existing Approaches

• AS Topology + Heuristics

# Different Algorithms result in significantly conflicting results!

comparable degree

- All p2c AS edges will cross the Tier-1
- All long-lived paths (> 2 days) are valley-free

#### **BGP Communities**

- Optional BGP attribute that encodes meta-data on an AS Path
  - AS Relationships, Routing policies, Geographical information
- Non-standardized values, each AS defines its own 32-bit values xxx:yyyy
  - xxxx: Autonomous System Number
  - yyyy: Community value

#### **BGP Communities**

TYPE: TABLE\_DUMP\_V2/IPV4\_UNICAST PREFIX: 1.22.73.0/24 FROM: 206.223.115.10 AS4589 ORIGIN: IGP ASPATH: 4589 15412 18101 45528 NEXT\_HOP: 206.223.115.10 COMMUNITY: 4589:2 4589:410 4589:612 4589:14413 15412:604 15412:614 15412:621 15412:705 15412:1431 18101:1344 18101:50120 18101:50420

Sample of BGP entry

#### **BGP Communities**

TYPE: TABLE\_DUMP\_V2/IPV4\_UNICAST PREFIX: 1.22.73.0/24 FROM: 206.223.115.10 AS4589 ORIGIN: IGP ASPATH: 4589 15412 18101 45528 NEXT\_HOP: 206.223.115.10 COMMUNITY: 4589:2 4589:410 4589:612 4589:14413 15412:604 15412:614 15412:621 15412:705 15412:1431 18101:1344 18101:50120 18101:50420

Sample of BGP entry

#### **BGP Communities**

TYPE: TABLE\_DUMP\_V2/IPV4\_UNICAST PREFIX: 1.22.73.0/24 FROM: 206.223.115.10 AS4589 ORIGIN: IGP ASPATH: 4589 15412 18101 45528 NEXT\_HOP: 206.223.115.10 COMMUNITY: 4589:2 4589:410 4589:612 4589:14413 15412:604 15412:614 15412:621 15412:705 15412:1431 18101:1344 18101:50120 18101:50420

Sample of BGP entry

#### **UC**

#### **Interpretation of BGP Communities**

Two-digit communities

Customers can set two-digit communities to control which local preference prefixes receive.

| Community | Local | Preference                      |
|-----------|-------|---------------------------------|
|           |       |                                 |
| 4589:10   | 50    | (equiv. to last resort transit) |
| 4589:20   | 100   | (equiv. to peering and transit) |
| 4589:25   | 130   | (depreferred customer route)    |
| 4589:30   | 150   | (default for customers)         |
| 4589:35   | 170   | (preferred customer route)      |

Three-digit communities

------

Prefixes coming from peers and transit will be tagged with three-digit community values, e.g. a prefix received at DECIX will be tagged with 4589:641. Only the most specific community is added, e.g. a route from DECIX will not have 4589:640 set.

Additionally prefixes from peers will be tagged with a 4xx community based on speed of the interconnection.

| Community | Entry point                              |
|-----------|------------------------------------------|
| 4589:4xx  | Special Markings                         |
| 4589:410  | From a high capacity IXP or Private Peer |
| 4589:420  | From a low capacity IXP or Private Peer  |

Network Operation Centers (NOCs) (e.g. lg.easynet.com/bgppolicy.php)

#### **Interpretation of BGP Communities**

| remarks: | 15412:1514 Amsterdam                                           |
|----------|----------------------------------------------------------------|
| remarks: |                                                                |
| remarks: | 15412:7xx Customer                                             |
| remarks: | 15412:701 Aggregate                                            |
| remarks: | 15412:702 Statically Routed                                    |
| remarks: | 15412:703 BGP Routed                                           |
| remarks: | 15412:705 BGP Routed (Suppress MED to upstreams)               |
| remarks: |                                                                |
| remarks: | 15412:8xx Peer                                                 |
| remarks: | 15412:800 PRIVATE PEER                                         |
| remarks: | 15412:801 PAIX                                                 |
| remarks: | 15412:802 NYIIX                                                |
| remarks: | 15412:803 JPIX                                                 |
| remarks: | 15412:804 KINX                                                 |
| remarks: | 15412:805 HKIX                                                 |
| remarks: | 15412:806 LINX                                                 |
| remarks: | 15412:807 SFINX                                                |
| remarks: | 15412:808 LAIX                                                 |
| remarks: | 15412:809 AMSIX                                                |
| remarks: | 15412:810 DECIX                                                |
| remarks: | 15412:813 JPNAP                                                |
| remarks: | 15412:814 EQUINIX ASHBURN VA                                   |
| remarks: | 15412:815 EQUINIX SINGAPORE                                    |
| remarks: | 15412:816 EQUINIX TOKYO                                        |
| remarks: | 15412:817 ANY2                                                 |
| remarks: | 15412:820 EQUINIX PARIS                                        |
| remarks: | 15412:821 EQUINIX HONG KONG                                    |
| remarks: |                                                                |
| remarks: | 15412:9xx Upstream                                             |
| remarks: | 15412:902 LEVEL3 AS3356                                        |
| remarks: | 15412:903 NTT/VERIO AS2914                                     |
| remarks: |                                                                |
| remarks: | BGP Communities available to customers for traffic engineering |
| remarks: |                                                                |
| remarks: | Modify LocalPref                                               |
| remarks: |                                                                |
| remarks: | 15412:80 = 80                                                  |
| remarks: | 15412:200 = 200 (e.g. backup link)                             |
| remarks: | 15412:300 = 300                                                |
| remarks: | Default (Customer/Transit/Peer) = 250/100/100                  |
| remarks: |                                                                |
| remarks: | Suppression/Prepend                                            |
| remarks: |                                                                |
| remarks: | 15412:4100 Do not announce to any upstream                     |
| remarks: |                                                                |
| remarks: | 15412:4120 Do not announce to LEVEL3 AS3356                    |

Internet Routing Registries (e.g. whois -h whois.radb.net AS15412)

#### **UC**

#### **Data Collection Architecture**



### **UC**

#### **Results (February 2011)**

| Total number of observed links   | 109,807      |
|----------------------------------|--------------|
| Number of inferred relationships | 38,704 (35%) |
| c2p links                        | 23,012       |
| p2p links                        | 15,375       |
| s2s links                        | 174          |



#### "Special" Relationship Types

- Relationships not described by the c2p, p2p, s2s model
- Little attention, difficult to detect
  - Partial transit: 1,828
  - Indirect peering: 811
  - Hybrid relationships: 1,034

#### **Partial Transit**



#### **Indirect Peering**



#### **Hybrid Links**



#### **IP-version depended**



#### Location depended

#### **IPv6 Relationships**

- 7,618 **AS links** carry both IPv4 and IPv6 traffic
  - 13% of these have different relationship between IPv4 and IPv6
- 47% of the IPv6 AS paths contain at least one hybrid AS link
- 10% of the IPv6 **AS paths** are non valley-free
  - Same during IPv6 day

#### Conclusions

- Unexploited wealth of BGP attribute data
- Complex relationship types widely disregarded become increasingly popular
- IPv6 relationships should be studied separately



#### **Conclusions & Future Work**

- Extend the interpretation of Communities values
- Extend to more AS links
- Use traceroute data to verify/evaluate inferences
- Performance impact on IPv6



# **THANK YOU!**