Modelling internet round-trip time data

Keith Briggs

Keith.Briggs@bt.com

http://research.btexact.com/teralab/keithbriggs.html

University of York 2003 July 18

TYPESET 2003 JULY 15 13:55 IN IATEX 2E ON A LINUX SYSTEM

motivation

- motivation
- data

- motivation
- data
- theory

- motivation
- data
- theory
- model fitting

Motivation

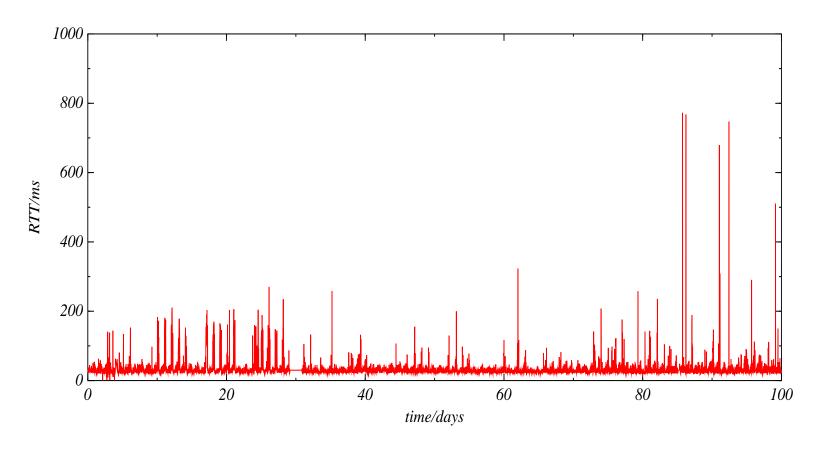
- internet as a complex system
- round-trip time (RTT) data forms an intriguing time series
- successful models would allow:
 - ▶ forecasting
 - ▶ simulation
 - understanding

Motivation

- internet as a complex system
- round-trip time (RTT) data forms an intriguing time series
- successful models would allow:
 - ▶ forecasting
 - ▶ simulation
 - understanding

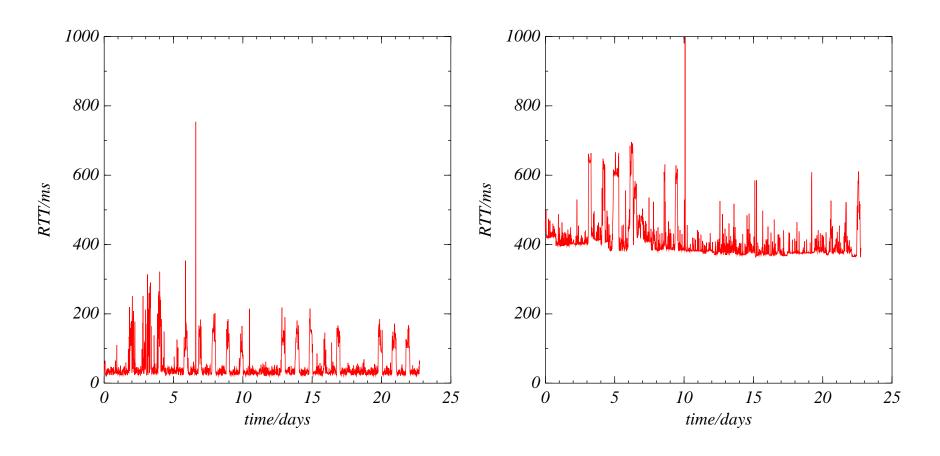
any model used should incorporate features believed to exist in the data in a *natural* way

Raw data 1



100 days of typical raw data, from www.edinburgh.ac.uk

Raw data 2



www.edinburgh.ac.uk and www.chem.uwa.edu.au

Long-range dependence?

definition:

$$\lim_{k\to\infty}\;\rho(k)\;k^{2(1-H)}={\rm constant}$$

•
$$0 < \alpha = 2(1-H) < 1$$

Long-range dependence?

definition:

$$\lim_{k\to\infty}\;\rho(k)\;k^{2(1-H)}={\rm constant}$$

- $0 < \alpha = 2(1-H) < 1$
- useless!
 - for stationary process only
 - ▶ large-k limit
 - \triangleright H cannot be estimated in practice even when it exists and is known

Long-range dependence?

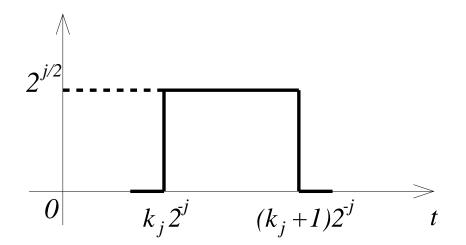
definition:

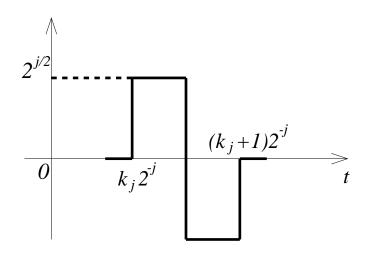
$$\lim_{k\to\infty} \rho(k) \ k^{2(1-H)} = \text{constant}$$

- $0 < \alpha = 2(1-H) < 1$
- useless!
 - for stationary process only
 - ▶ large-k limit
 - ▶ H cannot be estimated in practice even when it exists and is known
 - > tries to reduce complex phenomena to a single number

Wavelet transform 1

• I use the Haar basis - left: scaling function ϕ ; right: wavelet function ψ





$$\psi_{j,k}(t) = 2^{j/2} \psi(2^{j}t - k)$$
$$\phi_{j,k}(t) = 2^{j/2} \phi(2^{j}t - k)$$

$$\phi_{j,k}(t) = 2^{j/2} \phi(2^j t - k)$$

Wavelet transform 2

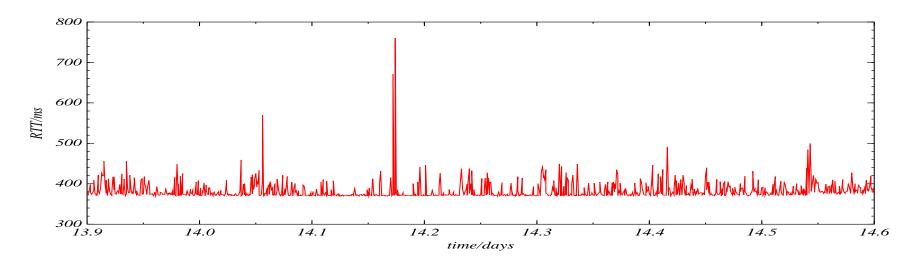
$$f_t = \sum_{k} U_{0,k} \,\phi_{0,k}(t) + \sum_{j=0}^{J} \sum_{k} W_{j,k} \,\psi_{j,k}(t)$$

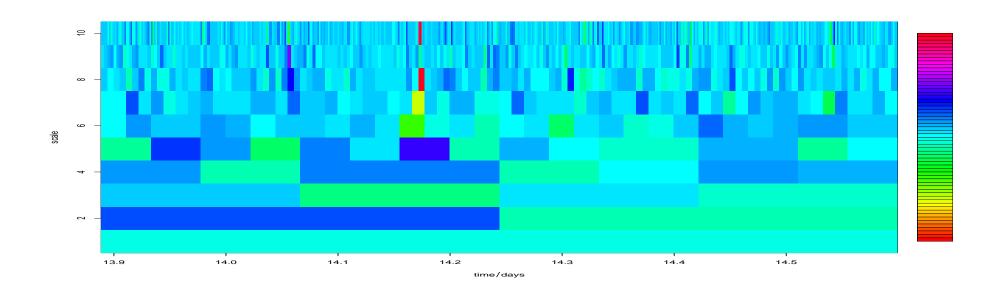
wavelet coefficients, $W_{j,k}$, and scaling coefficients, $U_{j,k}$, are defined by

$$W_{j,k} = \sum_{t=1}^{T} f_t \ \psi_{j,k}(t)$$

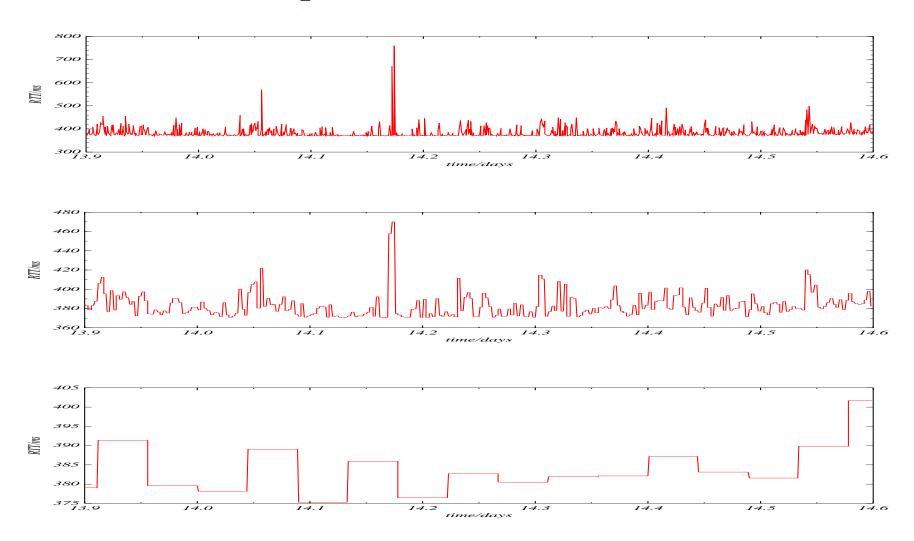
$$U_{j,k} = \sum_{t=1}^{T} f_t \ \phi_{j,k}(t)$$

Example wavelet transform 1





Example wavelet transform 2



Information at scales $J,\ J\!-\!1$ and $J\!-\!4$

Multifractal spectrum

ullet g is Lipschitz lpha at x_0 if lpha is the supremum of those a such that in a neighbourhood of x_0

$$|g(x)-p_{\lfloor\beta\rfloor}(x)| = \mathcal{O}(|x-x_0|^a)$$

where $p_{|\alpha|}$ is a polynomial of degree $\lfloor \alpha \rfloor$

Multifractal spectrum

ullet g is Lipschitz lpha at x_0 if lpha is the supremum of those a such that in a neighbourhood of x_0

$$|g(x)-p_{|\beta|}(x)| = \mathcal{O}(|x-x_0|^a)$$

where $p_{\lfloor \alpha \rfloor}$ is a polynomial of degree $\lfloor \alpha \rfloor$

• Let $f(\alpha)$ be the Hausdorff dimension of the set of points where the Lipschitz exponent is α . This is the *multifractal spectrum* of g

Multifractal spectrum

ullet g is Lipschitz lpha at x_0 if lpha is the supremum of those a such that in a neighbourhood of x_0

$$|g(x)-p_{\lfloor\beta\rfloor}(x)| = \mathcal{O}(|x-x_0|^a)$$

where $p_{\lfloor \alpha \rfloor}$ is a polynomial of degree $\lfloor \alpha \rfloor$

- Let $f(\alpha)$ be the Hausdorff dimension of the set of points where the Lipschitz exponent is α . This is the *multifractal spectrum* of g
- example:
 - ightharpoonup fractal Brownian motion has zero mean and Gaussian increments s. t. the mean square increment at lag Δ is proportional to $|\Delta|^{2H}$
 - ightharpoonup this is a monofractal $f(\alpha) = \delta(H)$
 - ightharpoonup however, estimates of f from a finite sample will not show this delta function behaviour

 \bullet to estimate $f(\alpha)$ from discrete data, use partition function $\tau(q)$

- \bullet to estimate $f(\alpha)$ from discrete data, use partition function $\tau(q)$
- For a process X(t), define the *structure function*, $S_j(q)$, by

$$S_j(q) = \sum_{k_j} (2^{-j/2} U_{j,k_j})^q$$

where U_{j,k_j} are Haar scaling coefficients for X(t)

- to estimate $f(\alpha)$ from discrete data, use partition function $\tau(q)$
- For a process X(t), define the *structure function*, $S_j(q)$, by

$$S_j(q) = \sum_{k_j} (2^{-j/2} U_{j,k_j})^q$$

where U_{j,k_j} are Haar scaling coefficients for X(t)

The partition function is then defined as

$$\tau(q) = -\lim_{j \to \infty} \frac{1}{j} \log S_j(q)$$

- to estimate $f(\alpha)$ from discrete data, use partition function $\tau(q)$
- For a process X(t), define the *structure function*, $S_j(q)$, by

$$S_j(q) = \sum_{k_j} (2^{-j/2} U_{j,k_j})^q$$

where U_{j,k_i} are Haar scaling coefficients for X(t)

The partition function is then defined as

$$\tau(q) = -\lim_{j \to \infty} \frac{1}{j} \log S_j(q)$$

Next define

$$f_L(\alpha) = \inf_{q \in \mathbb{R}} (q\alpha - \tau(q))$$

The multifractal formalism shows that

$$f(\alpha) \leqslant f_L(\alpha)$$

The Legendre transform of the partition function is the concave hull of $f(\alpha)$. $f_L(\alpha)$ is known as the Legendre spectrum

The multifractal formalism shows that

$$f(\alpha) \leqslant f_L(\alpha)$$

The Legendre transform of the partition function is the concave hull of $f(\alpha)$. $f_L(\alpha)$ is known as the Legendre spectrum

• Let us assume that our RTT data is a sample of an underlying continuous process. Assume further that the observable scaling behaviour of $S_j(q)$ is continued beyond the finest measured scale to the limit $j \to \infty$. That is,

$$S_j(q) \approx 2^{-j\tau(q)}$$

over $j = j_1, ..., j_2$, where $j_1, j_2 \in [0, J]$

The multifractal formalism shows that

$$f(\alpha) \leqslant f_L(\alpha)$$

The Legendre transform of the partition function is the concave hull of $f(\alpha)$. $f_L(\alpha)$ is known as the Legendre spectrum

• Let us assume that our RTT data is a sample of an underlying continuous process. Assume further that the observable scaling behaviour of $S_j(q)$ is continued beyond the finest measured scale to the limit $j \to \infty$. That is,

$$S_j(q) \approx 2^{-j\tau(q)}$$

over $j = j_1, ..., j_2$, where $j_1, j_2 \in [0, J]$

• $\tau(q)$ can be estimated from the gradient of a plot of $\log_2 S_j(q)$ against j over a finite range of scales

 Riedi and others have proposed a stochastic variant of this type of multifractal model

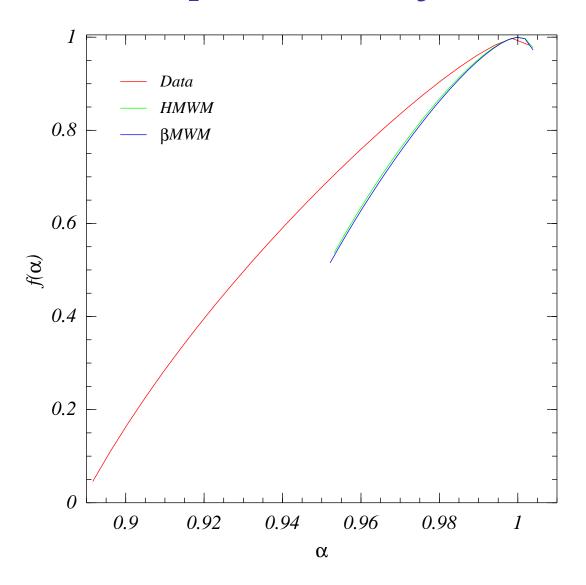
- Riedi and others have proposed a stochastic variant of this type of multifractal model
- We let the wavelet coefficients from one scale to the next be iid random variables
 - ▶ for example, from the Beta distribution

- Riedi and others have proposed a stochastic variant of this type of multifractal model
- We let the wavelet coefficients from one scale to the next be iid random variables
 - ▶ for example, from the Beta distribution
- Fitting to data then involves estimating the parameters in the distribution

- Riedi and others have proposed a stochastic variant of this type of multifractal model
- We let the wavelet coefficients from one scale to the next be iid random variables
 - ▶ for example, from the Beta distribution
- Fitting to data then involves estimating the parameters in the distribution
- simulating involves drawing random variates from the fitted distribution

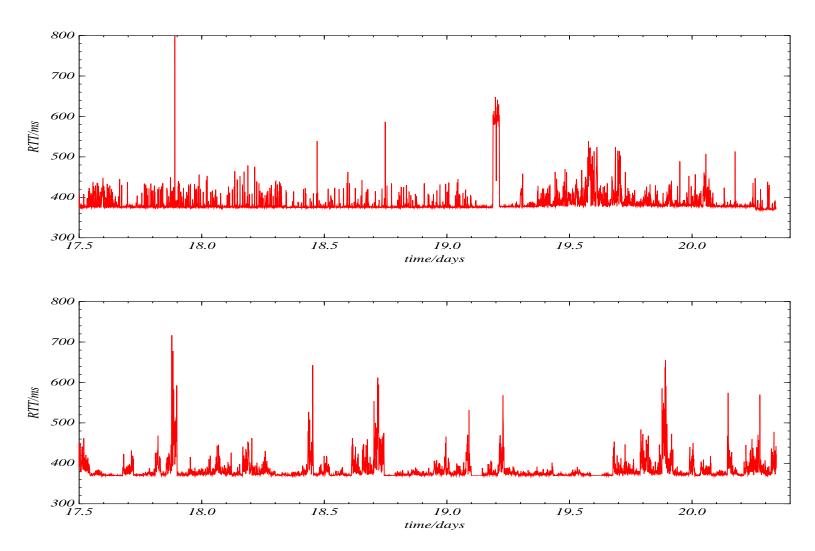
- Riedi and others have proposed a stochastic variant of this type of multifractal model
- We let the wavelet coefficients from one scale to the next be iid random variables
 - ▶ for example, from the Beta distribution
- Fitting to data then involves estimating the parameters in the distribution
- simulating involves drawing random variates from the fitted distribution
- determinism and preprocessing
 - Always remove any clear deterministic features from the data first:
 - > trends
 - > periodic components
 - ▶ baseline shifts

Example data analysis



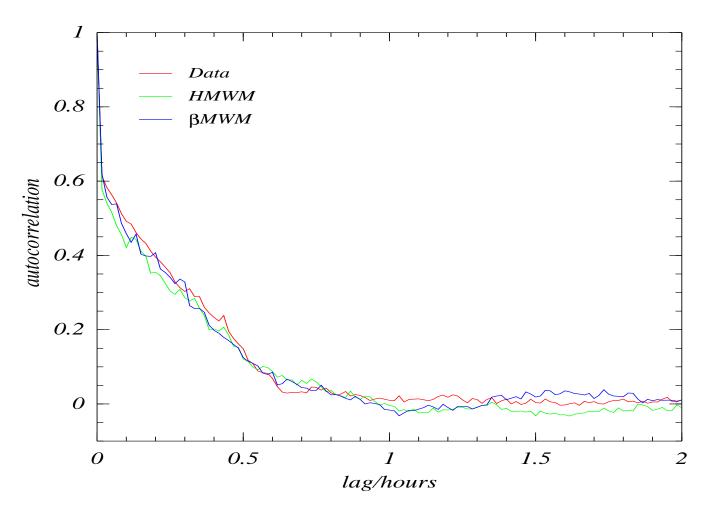
HMWM, β MWM and www.chem.uwa.edu.au multifractal spectra

Realizations



 2^{12} points from www.chem.uwa.edu.au (top) compared with a β MWM realisation (bottom)

Autocorrelation



www.chem.uwa.edu.au, HMWM, and β MWM autocorrelation

Conclusion and references

 There are many open questions in this type of work and few concrete models

Conclusion and references

- There are many open questions in this type of work and few concrete models
- Fitting and parameter estimation is a major problem

Conclusion and references

- There are many open questions in this type of work and few concrete models
- Fitting and parameter estimation is a major problem
- Full report and bibliography:
 - Analysis and simulation of internet round-trip times