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Introduction

I Evolving networks (graphs/topologies) are an important topic
for research.

I Want to describe and understand processes which govern
evolution.

Problem statement (vague)

I Want to grow networks with the same properties as real
networks.

I Want to be able to describe the evolution of the real network.

I Want to be able to compare rival theories about the evolution.



Topology modelling – the 1 minute history

Scale free networks

A scale free network is one where the degree distribution follows a
power law – P [deg = i ] ∼ i−α.

Scale free networks said to include:

I Internet Autonomous System (AS) graph [Faloutsos x 3
INFCOM 1999],

I hyperlinks in web pages / wikipedia,

I co-authorship/citation networks, and other social networks,

I biological networks (protein networks).

Preferential attachment

Probability of attach to node prop to node degree. Leads to scale
free network (Barabási–Albert [Science 1999]).



Other models – mainly Internet focused

I Waxman model [Waxman IEEE Selected Areas in
Communication 1988] – predates scale-free discovery.

I Generalised Linear Preference (GLP model) [Bu–Towsley,
INFOCOM 2004] – uses non-linear connection probabilities.

I Positive Feedback Preference (PFP model) [Zhou–Mondragón
Phys Rev E 2004]

I Prob. of connecting to i is pi ∼ d
(1−δ log10 di )
i where δ is a

tunable parameter.
I Combined with interactive growth model (how internal links

connect).
I δ tuned “by hand” to reproduce a number of statistics of

interest.
I Accounts for the fact that the fact that the internet is not

pure power law.



The “basket of statistics” approach

I Current approach – call it the “basket of statistics” method.

1. Select several statistics which can be measured on net
snapshot.

2. Use test model to grow test network (same size as real
network).

3. Compare the “basket of statistics” on real and test.

I New statistics motivate new models – but what if not all stats
match?

Topology modelling appears to be progressing in the following
manner:

1. Analyse snapshot of graph (topology) of interest.

2. Find some statistic the current model does not replicate (add
this to “basket”).

3. Create a new model which replicates the new statistic without
affecting old ones.

4. Test using the above procedure.



Refined problem statement

I Let G (t) be a time evolving graph which evolves according to
some probabilistic process.

I Let G = (Gi ,Gi+1, . . . ,Gi+n) be random variables
representing this process observed at discrete times.

I Let g = (gi , gi+1, . . . , gi+n) be a set of observations of G.

Problem statement — more precise

Given observations of a graph g want to:

I Create models which formally specifies
P [Gt+1 = gt+1|Gt = gt , . . .].

I Measure the likelihood of such a model producing g.

I Automatically test many such models.



FETA approach



A probabilistic model of graph evolution

I Creating a parameterised model M(θ) of
P [Gt+1 = gt+1|Gt = gt , . . .]. is not straightforward.

I This is not like normal stochastic process. The dimensionality
of G (t) changes over time.

I Could transform to some multi-dimensional process with
dimension highest dimension graph will achieve (nasty
solution).

I Also want a solution which is compatible with existing
research in field (can test existing research methods).



The FETA model structure

Operation model

I Process to select an operation on the network.

I Could be: add node, add edge, remove node and so on.

Object model

I Process selects which nodes/edges are involved in operation
selected by operation model.

I Probabilities are assigned to nodes and potential edges for
random selection.

I Edges selected by assigning probabilities to node pairs.

I Object model is main focus of this presentation.



FETA Model – operations model example

I Results reported here operation model can select from:

1. NewNodes(n,m) Create a new node and connect it to n new
nodes and m existing nodes.

2. NewLinks(n) Select an existing node and connect it to n
existing nodes.

3. NewClique(n,m) Create a clique between n new nodes and m
existing nodes.

I Example: Original preferential attachment model is:
NewNodes(0, 3).

I Graph evolution is broken down into the addition of cliques,
new nodes and links between existing nodes. (There is some
ambiguity here).

I The full operations model gives the probability of each
operation (with parameters) at each time step.

I More focus needed on the operations model. Here it is just
“copied” for real data.



Importance of operations model
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Object model examples

I For simplicity consider graphs which evolve using only the
NewNode(0, 1) operation – a new node is created and
connects to one existing node.

I Some function which maps all possible choices (of node or
link) to a probability.

I For example the Preferential Attachment model is pi = di/k
where:

I pi is the probability of choosing node i .
I di is the degree of node i .
I k is a normalising constant such that

∑
i pi = 1.

I The PFP model is pi = d
1+δ log10(di )
i /k where δ is a parameter.



The likelihood of FETA model

I Let M(θ) be a parameterised FETA model which assigns
probabilities to operations and object models with some
parameters θ.

I Define
fi ,M(θ)(gi ) = P [Gi = gi |M(θ),Gi−1 = gi−1,Gi−2 = gi−2, . . .]

I For convenience just write fi (gi )

I Then the likelihood of the model M(θ) given the observations
g (from i to i + n) is L(M(θ)|g) =

∏k=i+n
k=i+1 fk(gk).

I This likelihood defines how likely the model is given the
observations (or conversely, how probable the observations
given the model).

I It is the ability to assign a true likelihood to the graph
evolution which is key to the FETA process.



Usable likelihood

I Define l(M(θ)|g) = log(L(M(θ)|g).

I Because of normalisation problems standard log-likelihood
maximisation techniques do not work.

I Likelihood can be split into operation model and object model
components.

I Let M0 that be the null hypothesis – all choices are equally
likely. Let m be the number of choices (* warning – details
here).

I Human readable measure is c0 the per choice likelihood ratio.

Per choice likelihood ratio c0

c0 =

[
L(C |F )

L(C |M0)

]1/m
= exp

[
l(C |F )− l(C |M0)

m

]
.



Building object models from components

I Three possible object models have been introduced already.

1. M0 – all nodes equal.
2. Md – preferential attachment (nodes weighted by degree).
3. Mp(δ) – PFP model δ is parameter.

I How about mixture models?

I M = β1M0 + β2Md (nodes sometimes chosen randomly,
sometimes by degree) – 0 < β1 < 1 and β1 + β2 = 1.

I On the positive site, a larger family of explanations, on the
negative, more parameterisation.



Object model components
Throughout k is a normalising constant such that

∑
i pi = 1 for all

nodes considered. pi is the probability of picking node i (at the
stage being considered).

I Random model M0 pi = 1/k .
I Preferential attachment Md pi = di/k .

I PFP Mp(δ) pi = d
1+δ log10(di )
i /k where δ is a parameter.

I Degree power Md(α) pi = dαi /k where α is a parameter.
I Triangle model Mt pi = ti/k where ti is the triangle count

of node i .

I Singleton model M1 pi =

{
1/k di = 1

0 otherwise
.

I Doubleton model M2 pi =

{
1/k di = 2

0 otherwise
.

I Hot model Mh(n) pi =

{
1/k node chosen in last n picks

0 otherwise
where n is a parameter.



A GLM approach to optimise β parameters

I Want to automatically fit βi in models of form
M = β1M1 + β2M2 + · · · .

I Functional form looks temptingly like a generalised linear
model.

I Let pi ,j be the probability model assigns to node i at step j .

I Cannot fit to pi ,j at each stage because probability is not
directly measureable.

I Instead all we know is whether node i was actually selected or
not at stage t.

I Let Ii ,j be an indicator variable such that Ii ,j is one if node i
was chosen for choice j and zero otherwise.

I By definition E [Ii ,j ] = pi ,j .

I Therefore, we fit models of the form Ii ,j = β1M1 +β2M2 + · · · .
I Obviously many models of this form can be tried. Statistical

significance will reject unnecessary variables.



Artificial tests

I Perhaps the most convincing test of such a model is its ability
to recover parameters from a known model.

I Build a model with known M(θ). Assume a model structure,
try to recover θ.



Sweep one parameter (10,000 link network)
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Sweep two parameters (10,000 link network)
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Sweep two parameters (10,000 link network)
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Parameter recovery using GLM procedure

I Test model M = 0.25M0 + 0.25Mt + 0.25M1 + 0.25M2.

I Random model + triangle model + singleton model +
doubleton model.

I Generate 10,000 links and fit using GLM.

Parameter Estimate Significance

β0 0.23± 0.021 0.1%
βt 0.28± 0.017 0.1%
β1 0.24± 0.016 0.1%
β2 0.25± 0.020 0.1%



GLM procedure with incorrect model

I In reality we do not know which model components to use.

I Here the GLM is tested with an additional spurious model
component Md (preferential attachment).

I The Md component is rejected.

Parameter Estimate Significance

β0 0.33± 0.059 0.1%
βt 0.29± 0.017 0.1%
β1 0.24± 0.016 0.1%
β2 0.23± 0.022 0.1%
βd −0.089± 0.059 5%



General comments on GLM procedure

I Works well to recover parameters to known model.

I Can have issues when model components express “similar”
things (e.g. PFP and preferential attachment in same model).

I Acts as a guide to the user as to which model components to
include and which to reject.

I Does not allow testing of non-linear parameters (e.g. δ) but
can be combined with “parameter sweep”.

I Occasionally fails badly – parameters always sum to 1 but can
be negative.

I Sample point “explosion” each choice has as many samples as
nodes in graph. Over specified model...

I Use train, cross-validate, test sampling methodology (not
short of data).

I Ultimately though, the likelihood estimate c0 is the arbiter of
which model is correct.



Real data tests

I Tests have been performed on seven real networks:

1. Two views of Internet autonomous system graph.
2. Two photo sharing websites.
3. ArXiV linked publications.
4. Facebook wall posts.
5. Enron email database.

I Model sizes varied from 15,788 links to 200,000.

I Hypothetical models are created from components using
FETA (and GLM) and their c0 measured.



Real data test claims

I In order to make a comparison we use the operations model
by “cloning” the real operations and test four object models:

1. Preferential attachment Md .
2. Degree Power (tuning α) Md(α).
3. PFP model (tuning δ) Mp(δ).
4. Best model found combining all elements and tuning

parameters.

I Models are assessed by comparing c0 – higher is “better fit”.

I Graphs are then “grown” using the various models to compare
their parameters with the real network.

I The dynamic behaviour of target statistics is plotted as
deviation from the real data.



Runtime of likelihood estimate versus network creation
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Data sets

I Facebook data:
I Facebook data 200,000 public Facebook wall posts.
I Time stamped so dynamic behaviour available.

I Enron data:
I 250,000 emails from Enron – released as part of investigation

into disgraced company.
I Time stamped email with recipients form directed dynamic

network.

I Treated as undirected here and duplicates (and self links)
removed.



Facebook models

I The Preferential attachment model has c0 = 1.091.

I Highest c0 PFP model has c0 = 1.201 at δ = −0.225.

I Highest c0 degree power model has c0 = 1.220 with
α = 0.575.

I Best model is a mixture of random and degree power

I It has c0 = 1.221 and is 0.3M0 + 0.7Md(0.8).

I Expect therefore that Best is only slightly better than Degree
power and PFP.

I Expect both are better than Preferential attachment.

I Note that due to more degrees of freedom this will always be
the ordering (PA special case of PFP and Degree-power).



Facebook data – number of nodes of degree 1
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Facebook data – degree of maximal degree node
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Facebook data – mean square node degree
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Facebook data – clustering coefficient
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Enron data model

I The preferential attachment model gives c0 = 4.898.

I PFP model has maximal c0 = 4.927 when δ = −0.02.

I The degree power model has its maximum c0 = 4.903 with
α = 0.98.

I The “best” model has c0 = 21.35 and combined PFP and the
“hot” model.

I It is given by M = 0.75Mp(−0.02) + 0.25Mh(1).

I Expect “best” is much better than PFP or Degree power.



Enron data – number of nodes of degree 1
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Enron data – degree of maximal degree node
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Enron data – mean square node degree
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Enron data – clustering coefficient
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Results summary

I Clearly even the best models were not perfect on all data –
this is true of all data analysed.

I It can also be seen that analysis of a snapshot might fool
researcher that a model was excellent when it was poor.

I Roughly the models were in the order predicted by c0.

I The main exception is that the “Best” model for Enron would
be expected to be much better but is only a little better.

I No models capture the clustering coefficient well.

I However, this provides reasonable evidence that tuning models
using c0 produces a “better” fit to graphs.



Conclusions

I The likelihood parameters and the null model here provide a
rigorous way to assess a potential dynamic model of network
evolution.

I Known model parameters can be recovered using sweeps of
likelihood or GLM for linear parameters.

I The likelihood is reflected in improved performance on
replicating network statistics.

I The advantages of this framework are several:

1. Assesses the dynamic history of the data not statistics of a
snapshot.

2. Single statistically rigorous estimate of model likelihood.
3. Quicker than growing a network and testing statistics (using

same codebase).

I An exciting new way to test theories about topologies if you
have the data for it.



Further work

I What model components can be added (particularly for
assortativity and clustering).

I More data must be found – currently tested on seven
networks but need more.

I Further work must be done on the operations model.

I Multiplicative model combinations for the object model might
have greater success: M = KMβd

d MβT
T · · · .

I Software and data freely available – please email
richard@richardclegg.org

I See also the website (needs updating –work on improved Java
code very much underway)
http://www.richardclegg.org/software/FETA

I I am very keen to collaborate – this idea is interesting but
needs development.
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